
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

1 Instructor: Daniel Llamocca

Unit 4 – Multi-core applications

THREADING BUILDING BLOCKS
▪ C++ template library for parallel programming on multi-core processors. It helps to leverage multi-core performance.
▪ Computation broken down into tasks that can run in parallel. It manages and schedules threads to execute these tasks.
▪ Intel TBB® enables you to specify logical parallelism instead of threads. TBB run-time library automatically maps logical

parallelism onto threads in a way that makes efficient use of resources.
▪ Used for shared-memory parallel programming and heterogeneous computing (intra-node distributed memory

programming). Many parallel patterns can be implemented with TBB, e.g.: map, reduce, pipeline.

▪ The set of generic parallel algorithms available in TBB is shown in Table I. Template functions covered here: parallel_for,

parallel_invoke, parallel_reduce, parallel_pipeline

▪ References:
✓ Intel® Threading Building Blocks – Handbook. Intel® TBB is now called Intel oneAPI TBB (oneTBB).
✓ M. McCool, A. Robison, J. Reinders, “Structured Parallel Programming: Patterns for Efficient Computation”
✓ M. Voss, R. Asenjo, J. Reindeers, “Pro TBB: C++ Parallel Programming with Thread Building Blocks”.

TABLE I. GENERIC ALGORITHMS IN THE TBB LIBRARY
Category Generic Algorithm Brief Description

Functional parallelism parallel_invoke Evaluates several functions in parallel

Simple loops

parallel_for Map pattern over a range of values

parallel_for_each Map pattern over an iterator (parallel_do w/o work feeder)

parallel_reduce Reduction pattern over a range of values

parallel_deterministic_reduce
Reduction pattern over a range of value with deterministic

split/join behavior

parallel_scan Scan pattern (partial reductions) over a range of values

Complex loops parallel_do

Workpile pattern: loop where the iteration space is

unknown in advance and more iterations can be added

before the loop exits.

Sorting parallel_sort Parallel sort of elements of a sequence

Pipeline
pipeline Implementation of software pipeline

parallel_pipeline Strongly typed functions for pipelined execution

PARALLEL_FOR
▪ This template function allows us to implement a map pattern. Fig. 1(a) depicts the serial execution of a loop. Though there

are no dependencies between loop iterations, we still need to run the iterations sequentially. Fig. 1(b) depicts the map
pattern, where a function is applied to all elements of a collection, usually producing a new collection with the same shape
as the input. Here, we can execute all iterations in parallel given enough processors.

(a) (b)
Figure 1. (a) serial loop execution. (b) map pattern: a function is applied to all elements of a collection.

Rounded rectangles represent data. Rectangles represent tasks.

https://oneapi-spec.uxlfoundation.org/specifications/oneapi/latest/elements/onetbb/source/nested-index

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

2 Instructor: Daniel Llamocca

▪ The map pattern replicates a function over every element of an index set. The function must have no side-effects in order
for the map to be implementable in parallel while achieving deterministic results. Also, it must not modify global data that

other instances of the function depend on. The map pattern can replace a serial loop where:
✓ Every iteration is independent.
✓ The number of iterations is known in advance.
✓ Every computation depends only on the iteration count and data read using the iteration count as an index into a

collection.

TBB SYNTAX

▪ For example: We want to apply a function Fun to every element of an array. We can either:

✓ Update a[i] itself. Example: Fun(a[i]): 𝑎[𝑖] ← 𝑎[𝑖] × (𝑎[𝑖] + 1)

✓ Define another array (e.g. b[i]) onto which we place the results.

▪ Sequential implementation (the iteration space is of type size_t and goes from 0 to n-1)

void SerialApplyFun(float a[], size_t n) {

 for(size_t i=0; i!=n; ++i)

 a[i] = a[i]*(a[i]+1); // Fun(a[i])

}

✓ body’: For a function, this is the code enclosed within the curly brackets: { … }.

▪ Concurrent Implementation: The template function parallel_for breaks the iteration space (0 to n-1) into chunks and launches

the operations for each chunk on a separate thread. Put it another way, parallel_for divides up the iterations into tasks and

provides them to the Task Scheduler for parallel execution.

▪ To specify the iteration space and the chunks, we use the blocked_range template class provided by the library. It is a one-

dimensional iteration space over the specified type.

✓ blocked_range <type> (i,j, grain_size): Half-open range: [i,j). type: size_t, int, etc. grain_size = 1 by default.

For example:
 blocked_range<int>(0,5): Range [0,5) with grain size of 1 [0 1 2 3 4]

 blocked_range<int>(5,14,2): Range [5,14) with grain size of 2 [5 7 9 13]

METHOD WITH A CLASS

▪ Here, we use a class to define the operation applied to every element. Then, we call parallel_for.

✓ Class:
class ApplyFun {

 float *const my_a; // 'private' access (default access level)

public:

 void operator()(const blocked_range<size_t> &r) const {

 float *a = my_a;

 for(size_t i=r.begin(); i!=r.end(); ++i)

 a[i] = a[i]*(a[i]+ 1) // Fun(a[i]);

 }

 ApplyFun(float a[]) : my_a(a) {}

};

 The body of the SerialApplyFun function was converted into a form (ApplyFun) that operates on a chunk. This

form is a STL (standard template library)-style function object, called the body object (or body), in which
operator() processes a chunk.

 Function applied to every element: 𝑓(𝑎[𝑖]) = 𝑎[𝑖] ∗ (𝑎[𝑖] + 1).
 Range argument to loop template: const blocked_range<type> &r, const blocked_range<type> r. This defines

&r and r as a blocked range of ‘type’. The actual range boundaries are not defined here.

 operator() loads my_a into local variable a. Though not necessary, we do this because:

 Style: it makes the loop body look more like the original.
 Performance: The compiler may optimize better if we put frequently accessed values into local variables.

✓ Using parallel_for: Here, we embed parallel_for in a function, but this is optional.
Using namespace tbb;

void ParallelApplyFun(float a[], size_t n) {

 parallel_for(blocked_range<size_t>(0,n), ApplyFun(a));

}

 Iteration space: blocked_range<size_t>(0,n). This is a half-open range [0,n) = [0,n-1].

▪ TBB parallel_for recursively (range splits into two subranges, each of which can split into two subranges, and so on) splits

the range [0,n) into subranges and makes copies of the body (ApplyFun) for each of these subranges (argument r in

operator()). For each such body/subrange pair, it invokes operator(): each subrange r is processed by the sequential

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

3 Instructor: Daniel Llamocca

loop. The range and subranges are implemented as blocked_range objects. When worker threads are available, parallel_for

may execute iterations in non-deterministic order. Fig. 2 shows an example of execution.
▪ An instance of ApplyFun needs member fields that remember all the local variables that were defined outside the original

(large) loop but used inside it. These fields will be usually initialized by the constructor for the body object.

▪ TBB parallel_for requires the body object to have a copy constructor, which is invoked to create a separate copy (or copies)

for each worker thread. It also invokes a destructor to destroy these copies. In most cases, the implicitly generated copy
constructor and destructor work correctly.
✓ Since the body object may be copied, the operator() should not modify the body, otherwise the modification may or

may not become visible to the original thread, depending upon whether operator() is acting on the original thread or

a copy. Hence, the body object’s operator() must be declared const (so it can’t modify the object on which it is called)

LAMBDA EXPRESSIONS
▪ Available in the Version 11.0 of the Intel® C++ Compiler. They are very useful when using libraries like TBB to specify the

user code to execute a task. They are used to create anonymous function objects.
▪ Basic syntax: [capture-list] (params) -> ret { body}

✓ capture-list: comma-separated list used to make the variables outside the lambda expression accessible inside the

lambda expression, via copy or reference.
 We capture a variable by value by listing the variable name in the capture-list.

 We capture a value by reference by prefixing with &. And we can use this to capture the current object by reference.

 There are also defaults:
 [=]: captures all automatic variables used in the body by value and the current object by reference.

 [&]: captures all automatic variables used in the body and the current object by reference

 []: captures nothing. Allowed in some circumstances.

✓ params: list of function parameters (optional), just like for a named function. If no function parameters use () or omit.

✓ ret: return type. If ->ret is not specified, it is inferred from the return statements

✓ body: function body

▪ Examples:
✓ [i, &j] (int k0, int &l0) -> int { j=2*j; k0 = 2*k0; l0 = 2*l0; return i+j+k0+l0; };

 It captures i by value, j by reference. It has a parameter k0, and another parameter l0 that is received by reference.

 We can think of a lambda expression as an instance of a function object, but the compiler creates the class definition

for us. The lambda expression is analogous to an instance of this class:
class Functor {

 int my_i;

 int &my_jRef;

public:

 Functor (int i, int &j): my_i {i}, my_jRef{j} {}

 int operator () (int k0, int &l0) {

 myjRef = 2 * my_jRef; k0 = 2 * k0; l0 = 2*l0;

 return my_i + my_jRef + k0 + l0;

 }

};

✓ [&] (float x) -> float { return x++; }

✓ [] () { cout << “This is a lambda expression” << endl; }

✓ [] { funct (parameters) }

 We can invoke function funct and specify its parameters. Note that this lambda expression captures nothing, has no

parameters (() could have been used but was omitted) nor return type.

Figure 2. parallel_for execution example for parallel_for(blocked_range<size_t>(0,n), ApplyFun(a)) for n=12. Here,

the iteration space is partitioned into 4 chunks (subranges) to be executed concurrently. Each chunk is processed by a body (copies

are made as needed for each chunk). Within each chunk, the processing is sequential.

for (i=9; i!=12; ++i)

a[i] = a[i]*a[i]+1;

0 11

0 2

blocked_range<size_t>(0,12)

r0

ApplyFun(r0)

parallel_for(blocked_range<size_t>(0,12), ApplyFun(a));

a

f f f

3 5

r1

ApplyFun(r1)

f f f

6 8

f f f

9 11

f f f

ApplyFun(r2) ApplyFun(r3)

r2 r3

b0 b1 b2 b3

 Range Splitting

(recursively)

 Assigning each subrange to a body:

 Execution of the operation

within subranges

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

4 Instructor: Daniel Llamocca

▪ Whenever we use a C++ lambda expression, we can substitute it with an instance of a function object. C++ lambda
expressions simplify the use of TBB by eliminating the need of defining a class for each use of a TBB algorithm.

▪ This makes parallel_for much easier to use as it lets the compiler do the tedious work of creating the function object.

✓ Normal lambda expression: It replaces both the declaration and construction of the function object ApplyFun in the

previous example: only one call to parallel_for is required.
parallel_for(blocked_range<size_t>(0,n), [&](const blocked_range<size_t> r) {

 for(int i=r.begin(); i!=r.end(); ++i) // 0 <= i < n

 a[i] = a[i]*(a[i]+1); // Fun (a[i])

 });

 The lambda expression creates a function object very similar to ApplyFun.

✓ Compact lambda expression: TBB has a form of parallel_for expressly for parallel looping over a consecutive range of

integers (parallel_for (first, last, step, f) for (i=first; i< last; i+=step) f(i)). The step parameter is optional.

parallel_for(size_t(0), size_t(n), [&] (size_t i) { // 0 <= i < n

 a[i] = a[i]*(a[i]+1); // Fun(a[i]);

 });

RACE CONDITIONS

▪ parallel_for assumes that the body of the loop is thread-safe, i.e., it does not have race conditions. It is then important to

ensure that variables inside loop only depend on the index of the loop. Otherwise the threads might interact with each other
updating variables at the wrong time.

▪ Here, we show how to do create thread-safe implementations when every iteration in the loop is independent and every

computation depends on the iteration index and data read using that index. Otherwise, you need to use advanced
synchronization mechanisms (e.g: atomic operations, mutual exclusions).

▪ For example, we want to apply the following operation to 100-element vector �⃗� of type int. The result 𝑣𝑜⃗⃗⃗⃗⃗ should also be

of type int.

𝑣𝑜[𝑖] = 𝑟𝑜𝑢𝑛𝑑 ((
𝑣[𝑖]

256
)

0.7

) × 256

▪ This is a straightforward operation; the following is a typical sequential implementation:

...

double tmp, aux;

int *vi, *vo;

vi = (int *) calloc (100,sizeof(int));

vo = (int *) calloc (100,sizeof(int));

...

for (i = 0; i < 100; i++) {

 tmp = ((double) vi[i]) /256;

 aux = pow(tmp,0.7)*256;

 vo[i] = (int) (aux + 0.5); // Rounding + Saturation

}

...

✓ In this simple operation, we use temporal variables tmp and aux in order to make the code more readable.

▪ Using TBB, we can replace the for loop with parallel_for (compact lambda expression):
tbb::parallel_for (int(0), int(100), [&] (int i) { // 0 <= i < 100

 tmp = ((double) vi[i]) /256;

 aux = pow(tmp,0.7)*256;

 vo[i] = (int) (aux + 0.5);

 });

✓ The code inside the loop is not thread-safe. The threads interact causing tmp and aux to be updated by other threads

that are not associated with the corresponding thread. This might cause race conditions.

 Note that the race condition can be a rare occurrence. In this example, we found race conditions for large vector
sizes (> 10,000) and it only affected a few data points. These race conditions can be very difficult to spot.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

5 Instructor: Daniel Llamocca

Thread-safe implementations
▪ First approach: we declare tmp and aux as vectors that depend on the iteration index. This way, every thread will only access

its respective tmp[i] and aux[i].
double *tmp, *aux;

tmp = (int *) calloc (100,sizeof(int));

aux = (int *) calloc (100,sizeof(int));

tbb::parallel_for (int(0), int(100), [&] (int i) { // 0 <= i < 100

 tmp[i] = ((double) vi[i]) /256;

 aux[i] = pow(tmp[i],0.7)*256;

 vo[i] = (int) (aux[i] + 0.5);

 });

✓ While this approach works, it is inefficient if the operation inside the loop is more complex (like requiring extra loops and
conditions).

▪ Second approach (using functions): This is the recommended approach, where we encapsulate the function Fun[i] (applied

to every element of the array) in a function.
int Fun (int *di, int k) {

 double tmp, aux, result;

 tmp = ((double) di[i]) /256;

 aux = pow(tmp,0.7)*256;

 result = (int) (aux + 0.5);

 return result;

}

...

tbb::parallel_for (int(0), int(100), [&] (int i) { // 0 <= i < 100

 vo[i] = Fun(vi, i);

 });

✓ Note that every iteration must be independent of each other. Every computation must depend only on the iteration index
and data read using the iteration index as an index into the collection.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

6 Instructor: Daniel Llamocca

PARALLEL_INVOKE

▪ Perhaps the simplest algorithm provided by the TBB library. This template function allows us to implement a map pattern.

▪ parallel_invoke executes a list of (2 to 10) tasks in parallel and waits for all tasks to complete. This is different than parallel_for.

▪ To execute functors 𝑓0, 𝑓1, 𝑓2, … , 𝑓9, the syntax is:

parallel_invoke(const Func0& f0, const Func1&f1, ..., const Func9& f9);

✓ Each argument must have a type for which the operator() is defined.

✓ Note that the arguments are usually function objects (functors), though they can also be pointers to functions or lambda
expressions.

▪ Basic example with lambda expressions:

int main () {

 parallel_invoke (

 [] () { cout << “Hello “ << endl;},

 [] () { cout << “TBB! “ << endl;}

);

 return 0;

}

✓ Lambda expressions avoid creating function objects (functors) when using parallel_invoke.

 We use lambda expressions to specify the functions: this can include expressions and calls to functions.
✓ Note that the resulting output may contain either Hello or TBB! First. There might not even be newline character

between the two strings and two consecutive headlines at the end of the output.

▪ Example with functors, function pointers, and lambda expressions:
void bar (int a) {

 int t;

 t = a*a*a;

 cout << "(bar) a^3 = "<< t << "\n";

}

class MyFunctor {

 int arg;

public:

 MyFunctor(int a): arg(a) {}

 void operator() () const { bar(arg);}

};

void f () {

 cout << "(function) executed!\n";

}

int main () {

 MyFunctor g(2);

 MyFunctor h(3);

 // f,g,h evaluated in parallel

 parallel_invoke(f,g,h); // f: pointer to function. g,h: functors

 // f and bar(1) evaluated in parallel

 parallel_invoke(f, []{ bar(1); }); // lambda expression (no need to create function object)

 return 0;

}

✓ parallel_invoke(f,g,h): If the three function invocations execute for roughly the same amount of time and there are

no resource constraints, this parallel implementation can be completed in a third of the time it takes to sequentially
invoke the functions one after the other.

✓ parallel_invoke(f, []{ bar(1); }): We can use lambda expressions to avoid creating function objects. We could

also do: parallel_invoke (f,g,h, []{ bar(1); }).

✓ Recall that it is the responsibility of the developer to invoke functions in parallel only when they can be safely executed
in parallel. TBB will not automatically identify dependencies and apply synchronization and other parallelization strategies
to make the code safe.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

7 Instructor: Daniel Llamocca

PARALLEL_REDUCE

▪ This template function allows us to implement a reduction pattern. A reduction combines every element in a collection into

a single element using an associative combiner function.
▪ A reduction can be implemented as a serial loop, where there is data dependency, as depicted in Fig. 3(a). However, Fig.

3(b) shows how a reduction can be parallelized using a tree structure. Note that the tree parallelization of the reduction is
implemented using the same number of operations as the serial version. A very common example of a reduction is the
accumulation of all elements in a collection.

▪ Reductions can use operations other than accumulation, such as maximum, minimum, multiplication, Boolean operations.

TBB SYNTAX
▪ Example: Applying the reduction operation (accumulation of cubes). ∑ 𝑓(𝑎[𝑖])𝑛−1

𝑖=0 , 𝑓(𝑎[𝑖]) = 𝑎[𝑖] × 𝑎[𝑖] × 𝑎[𝑖].

✓ Using parallel_reduce, where we indicate the iteration space, as well as the object:

float ParallelSumFun(float a[], size_t n) {

 SumFun sf(a); // Object ‘sf’ created with argument a

 parallel_reduce(blocked_range<size_t>(0,n), sf);

 return sf.my_sum; }

 The reduction is applied to range [0,n) for object sf.

✓ The class SumFun specifies the details of the reduction (e.g.: how to accumulate subsums and combine them):

class SumFun {

 float * my_a; // 'private' access (default access level)

public:

 float my_sum;

 void operator()(const blocked_range<size_t> &r) {

 float *a = my_a;

 float sum = my_sum;

 for (size_t i=r.begin(); i!=r.end(); ++i)

 sum += a[i]*a[i]*a[i]; // Associative combiner function

 my_sum = sum;

 }

 SumFun (SumFun &x, split): my_a(x.my_a), my_sum(0) {} // my_a = x.my_a, my_sum = 0

 void join (const SumFun &y) { my_sum += y.my_sum; }

 SumFun (float a[]): my_a(a), my_sum(0) {} // my_a = a, my_sum = 0

};

 SumFun: the operator() is not const. This is because we need to be able to update my_sum.

(a) (b)

Figure 3. Reduction. (a) serial implementation. (b) parallel implementation.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

8 Instructor: Daniel Llamocca

 The class SumFun has a splitting constructor and a join method that must be present for parallel_reduce to work.

 Splitting constructor: SumFun (SumFun &x, split): my_a(x.my_a), my_sum(0) {}. This represents the splitting

of body x into x a newly constructed body y: SumFun y (x, split). We fork a body (function object) to allow

concurrent execution. Arguments: a reference to the original object (x), and an argument of type split (defined

by the library to distinguish the splitting constructor from a copy constructor).
 Join method: void join (const SumFun &y) { my_sum += y.my_sum; }. This represents the merging of the

results of bodies x and y: x.join(y). Body name y: declared here, it is implicitly used in the splitting constructor.

 Function applied to every element: 𝑓(𝑎[𝑖]) = 𝑎[𝑖] × 𝑎[𝑖] × 𝑎[𝑖].
 Associative Combiner function: Scalar addition

TBB parallel_reduce operation

▪ TBB parallel_reduce first recursively splits the range [0,n) into subranges.

▪ Then, it assigns each subrange to a body: it recursively attempts to split a body.

✓ If worker threads are available, parallel_reduce invokes the splitting constructor for a body. For each such split of the

body, it invokes the join method to merge the result of the bodies.

 Fig. 4(a) depicts the split of a body x into x and a new body y (iteration range is first split into two subranges), where

each body performs the reduction of a subrange, and then join is used to merge the results of the two bodies.

✓ If worker threads are not available, parallel_reduce does not invoke the splitting constructor for a body. For a range divided

into two subranges, the second subrange is reduced using the same body that reduced the first subrange.
 Fig. 4(b) depicts this case, where the same body performs the reduction of the two subranges.

 Figure 4. (a) Body x is split into x and y, where each perform the reduction of a subrange. The results are merged via the merge

method. (b) Body x is not split: it processes both subranges; thus the operator() in the body cannot discard earlier accumulations.

x

x y

[0,n)

[0,n/2) [n/2,n)

x

x y

[0,n)

[0,n/2) [n/2,n)

split iteration space in half

x: reduce 1st half of iteration space

3 4 5

Available Worker

steal 2nd half of iteration space 3 4 5

wait for y

y: reduce 2nd half of iteration space

0 1 2

3 4 5f

0 1 2

f f

f f f

join body x with body y:
x.join(y);

create new body:
SumFun y(x,split);

3 4 50 1 2

x.my_sum

y.my_sum

y.my_sum

x.my_sum

x.my_sum

split iteration space in half

x: reduce 1st half of iteration space

3 4 5

No Available Worker

0 1 2

3 4 5

f

0 1 2

f f

f f f

3 4 50 1 2

x.my_sum

x.my_sum

x: reduce 2nd half of iteration space

x.my_sum

(a)

(b)

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

9 Instructor: Daniel Llamocca

▪ With the subranges assigned to bodies (not necessarily all different bodies), the reduction for each subrange is computed.
Finally, the join method (if applicable) is used recursively until the final result is computed.

✓ If each subrange is assigned to a different body, then all reductions are executed concurrently.
✓ For a range that is divided recursively into many subranges, when assigning each subrange to a body, we may have the

following cases along the way:
 A body splits. Each of the resulting bodies may or may not split.
 A body did not split (the same body must process two subranges). Each time the body operates on a subrange, it

may split (or not) into two bodies.

✓ It is possible that each range is assigned to the same body. Here, parallel_reduce runs sequentially from left to right.

Sequential execution never invokes the splitting constructor or method join.

▪ Note that parallel_reduce may copy a body while the body’s operator() or method join runs concurrently.

▪ Fig. 5 depicts a parallel_reduce operation example. The range is recursively split at each level into two subranges, until we

are left with four subranges (r0, r1, r2, r3). Then, we assign each subrange to a body. Here, the Task Scheduler lets us

have a different body (b0, b1, b2, b3) for each subrange. Then, all bodies concurrently execute their reduction. The join

method is used recursively to merge the results of two bodies: first, we merge two sets of bodies (b0 and b1 into b0, b2 and

b3 into b2), then we merge the result of two bodies (b0 and b2 into b0).

▪ Fig. 6 depicts a parallel_reduce operation example, where not all subranges can be assigned to a different body. Here, the

Task Scheduler lets us have a different body (b0, b1, b2) for subranges r0, r1, r2, but b2 is assigned to r3 as well. Then,

only b0, b1, b2 can execute concurrently. The join method is used recursively to merge the results of two bodies: first, we

merge b0 and b1 into b0, then we merge b0 and b2 into b0. Here, b2 reduces two subranges (r2, r3) sequentially from left

to right: b2 reduces r2 first, then b2 reduces r3.

✓ Because the same body (b2) is used to merge multiple subranges, the operator() cannot discard earlier accumulations.

 Initializing sum = 0 in operator() is incorrect, as the body would return a partial sum only for the last subrange.

✓ Instead, my_sum = sum ensures that the b2 returns the accumulated sum of all the subranges that b2 reduced. This is

illustrated in Fig. 6, where when processing subrange r3, our initial sum is the partial sum of subrange r2.

Figure 5. parallel_reduce execution example for range [0,12). The iteration space is partitioned into 4 chunks. Each chunk is processed by a

different body. Within each chunk, the processing is sequential. Partial results (from different bodies) are merged recursively.

0 11

blocked_range<size_t>(0,12)

r0 r1 r2 r3

SumFun(r0)

SumFun sf(a);

parallel_reduce (blocked_range<size_t>(0,12), sf);

a

f f f f f f f f f f f f

b0.join(b1) b2.join(b3)

b0.join(b2)

b0

b0 b2

[0,12)

[0,6) [6,12)

b0 b1[0,3) [3,6) b2 b3[6,9) [9,12)

b0
b1 b2 b3

SumFun(r3)SumFun(r2)SumFun(r1)

 Range Splitting

(recursively)

 Assigning each subrange to a body:

 Execution of reduction

within subranges

 Recursive joining

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

10 Instructor: Daniel Llamocca

TBB parallel reduce as map and reduce

▪ In our application example ∑ 𝑓(𝑎[𝑖])𝑛−1
𝑖=0 , 𝑓(𝑎[𝑖]) = 𝑎[𝑖] × 𝑎[𝑖] × 𝑎[𝑖], a function f is applied to every element 𝑎[𝑖], and then

the resulting 𝑓(𝑎[𝑖]) are added up. This operation could be implemented as:

✓ Using parallel_for (map pattern) to compute 𝑓(𝑎[𝑖]) for 𝑖 = 0, … 𝑛 − 1.

✓ Using parallel_reduce (reduction pattern) to compute ∑ 𝑓(𝑎[𝑖])𝑛−1
𝑖=0 .

▪ In our implementation, we only used parallel_reduce where we effectively computed each 𝑓(𝑎[𝑖]) and ∑ 𝑓(𝑎[𝑖])𝑛−1
𝑖=0 . This

effectively implements the map and reduction pattern: when the subranges are computed concurrently, the computation of
the 𝑓(𝑎[𝑖]) in different subranges is also concurrent. Note that within a subrange, the computation of 𝑓(𝑎[𝑖]) is sequential,

as it would be the case in a subrange created by parallel_for.

▪ Either approach would work similarly, but note that launching only parallel_reduce may be more optimal (time, resources)

than launching both parallel_for and parallel_reduce.

Example: body splitting for a different range:

▪ Fig. 7 shows different assigning of subranges to bodies when applying parallel_reduce over blocked_range<int>(0,20,5).

The smallest non-divisible subrange is a 5-element subrange. After range splitting, we ended up with four subranges. When
assigning a subrange to a body, more bodies are created (split) depending on the availability of worker threads (the ‘/’

mark denotes where copies of a body were created by the splitting constructor):
✓ Fig. 7(a): Three bodies. b0 splits into b0 and b2. Then b0 splits again into b0 and b0. b2 does not split. b0 processes

subrange [0,5), b1 processes [5,10). Body b2 processes subranges [10,15) and [15,20) (in that order: left to right).

On the way back up the tree, parallel_reduce invokes b0.join(b1) and b0.join(b2) to merge the results of the leaves.

✓ Fig. 7(b): Four bodies. This is similar to the case of Fig. 7(a), but b2 does split into b2 and b3.

✓ Fig. 7(c): Two bodies. b0 splits into b0 and b1. b0 processes the subranges [0,5), [10,15), [15,20), while b0 processes

the subrange [5,10). On the way back up the tree, b0 merges with b1: b0.join(b1). As b0 processes the subranges

(including merging with the result of b1), it accumulates the partial sums into a total sum.

✓ Fig. 7(d): One body (no worker threads available). Here, parallel_reduce executes sequentially from left to right. There is

no splitting or join calls. Here, 𝑏0 evaluates each of the four subranges in left to right order.

Figure 6. parallel_reduce execution example for range [0,12). Here, the iteration space is partitioned into 4 chunks. Only three chunks

are processed by different bodies. Body b2 executes the reduction of r2 and r3 sequentially, just accumulating the partial results.

0 11

blocked_range<size_t>(0,12)

r0 r1 r2

r3

SumFun(r0)

SumFun sf(a);

parallel_reduce (blocked_range<size_t>(0,12), sf);

a

f f f f f f f f f

f f f

b0.join(b1)

b0.join(b2)

b0

b0 b2

[0,12)

[0,6) [6,12)

b0 b1[0,3) [3,6) b2 b2[6,9) [9,12)

b0 b1 b2

SumFun(r3)

SumFun(r2)SumFun(r1)

 Range Splitting

(recursively)

 Assigning each subrange to a body:

 Execution of reduction

within subranges

 Recursive joining

b2

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

11 Instructor: Daniel Llamocca

b0

b0 b2

[0,20)

[0,10) [10,20)

b0 b1[0,5) [5,10) b2 b2[10,15) [15,20)

b0

b0 b2

[0,20)

[0,10) [10,20)

b0 b1[0,5) [5,10) b2 b3[10,15) [15,20)

b0

b0 b0

[0,20)

[0,10) [10,20)

b0 b1[0,5) [5,10) b0 b0[10,15) [15,20)

b0

b0 b0

[0,20)

[0,10) [10,20)

b0 b0[0,5) [5,10) b0 b0[10,15) [15,20)

(a) (b)

(c) (d)

Figure 7. Sample executions of parallel_reduce. (a) 3 bodies: b2 sequentially processes two subranges (b) 4 bodies: each subrange is

processed concurrently. (c) 2 bodies. (d) 1 body: fully sequential operation over the four subranges.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

12 Instructor: Daniel Llamocca

PARALLEL_SCAN

▪ This template function implements a scan pattern in parallel. A scan operation (reduction with intermediate values)

generates all partial reductions of an input sequence, resulting in a new output sequence.
▪ Table II shows the mathematical definition of the scan operation: let be an associative operation with a constant element

id. Input sequence: 𝑧0, 𝑧1, … 𝑧𝑛−1. Output sequence: 𝑦0, 𝑦1, … , 𝑦𝑛−1.

TABLE II. MATHEMATICAL DEFINITION OF SCAN OPERATION AND ITS SERIAL IMPLEMENTATION
Generic Scan Operation Serial implementation

𝑦0 = id𝑧0
𝑦1 = 𝑦0𝑧1
…
𝑦𝑖 = 𝑦𝑖−1𝑧𝑖
…
𝑦𝑛−1 = 𝑦𝑛−2𝑧𝑛−1

size_t tmp; // or double tmp

tmp = id;

for i = 1:n

 tmp = tmp z[i]
 y[i] = tmp;

end

▪ Despite the loop-carried dependency, the scan operation can be parallelized. Like reduction, we can take advantage of the

associativity of the combiner function to reorder operations.
✓ However, unlike reduction, parallelizing scan comes at the cost of redundant computations.

▪ Parallel scan is performed by reassociating the application of and using two passes (it may invoke up to twice as many

times as the serial algorithm). Fig. 8(a) depicts the serial implementation, while Fig. 8(b) depicts one possible parallel
implementation of the scan pattern.

TBB PARALLEL_SCAN
▪ The range is divided by the TBB library into chunks and TBB tasks are created to apply the body (scan) to these chunks.

✓ Prefixes: intermediate results for each element in the range, i.e., y[i].

▪ However, the scan body may be executed more than once on the same chunk of iterations: first in a pre-scan mode and then

later in a final-scan mode. So, TBB parallel_scan involves two passes, of which the pre-scan pass is not always executed.

✓ pre-scan mode: the body is passed a ‘starting’ (partial) prefix value for the element that precedes its subrange. It returns

a partial (not yet final) prefix for the last element in its subrange. This is the result (also called summary) of the reduction.

The prefixes y[i] are not updated.

✓ final-scan mode: the body is passed an accurate (final) prefix value for the element that precedes its subrange. It returns

the (final) prefixes for each iteration in is subrange (including the one for the last element, i.e., the results of the
reduction). Scan results are computed and returned (i.e., the prefixes y[i] are updated)

Figure 8. Scan pattern (a) serial implementation. (b) parallel implementation
(a) (b)

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

13 Instructor: Daniel Llamocca

▪ Example: Scan operation applied to summation, i.e., operator +.

✓ The parallel_scan template indicates the iteration space, as well as the object:
void main () {

 size_t z[16] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};

 size_t y[16], id = 0;

 int n = sizeof(z)/sizeof(z[0]);

 SumScan sf(y,z,id); // Object ‘sf’ created with arguments y, z, and id

 parallel_scan(blocked_range<size_t>(0,n), sf);

 printf (“Result: %ld\n”, sf.sum); for (int i=0; i < n; i++) printf (“y[%d] = %ld\n”,i,y[i]);

}

✓ The class SumScan specifies the details of the parallel_scan (this is called the imperative form):
class SumScan {

 size_t id;

 size_t* y;

 const size_t* z;

public:

 size_t sum;

 SumScan(size_t y_[], const size_t z_[], size_t id_) : sum(id_), z(z_), y(y_), id(id_) {}

 template <typename Tag>

 void operator()(const blocked_range<size_t> &r, Tag) { // accumulate summary for range r

 size_t temp = sum;

 for(int i = r.begin(); i < r.end(); ++i) {

 temp = temp + z[i];

 if(Tag::is_final_scan()) // bool is_final_scan(): true for a final_scan_tag, else false

 y[i] = temp; // scan result

 }

 sum = temp; // summary: from final_scan or pre_scan

 }

 SumScan(SumScan& b, split) : z(b.z), y(b.y), sum(id) {} // split constructor

 void reverse_join(SumScan& a) { sum = a.sum + sum; }

 void assign(SumScan& b) { sum = b.sum; }

};

✓ Fig. 9 depicts a possible execution of parallel_scan. Range z[0:15]: Split into 4 subranges; a body operates on a subrange.

 First body b0 is created and assigned

the 1st subrange.

 b0 is split: b0 and b2 (assigned the

3rd subrange).

 b0 is split (again): b0 and b1

(assigned the 2nd subrange).

 Body b0 executes in final_scan

mode. Result: y[0:3], b0.sum=10.

 Body b1 executes in pre_scan mode.

y[3]: inaccurate. Result: b1.sum=26.

 Body b2 executes in pre_scan mode.

y[7]: inaccurate. Result: b2.sum=42.

 Reverse join of b1 and b0 into b1: add

summaries of b1 and b0

b1.sum=26+10=36.

 Reverse join of b2 and b1 into b2: add summaries

of b2 and b1 b2.sum=36+42=78.

 b0 assigned the 2nd subrange and executes in

final_scan mode. y[3] (b0.sum=10) is accurate.

Result: y[4:7], sum=10+(5+6+7+8)=36.

 b1 assigned the 3rd subrange and executes in

final_scan mode. y[7] (b1.sum=36) is accurate.

Result: y[8:11], sum=36+(9+10+11+12)=78.

 b2 assigned the 4th subrange and executes in

final_scan mode. y[11] (b2.sum=78) is accurate.

Result: y[12:15], sum=78+ (13+14+15+16)=136.

 The summary of b2 is assigned to the summary of

b0 b0.sum = 136. b2 and b1 are destroyed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

co
n

st
ru

ct
or

final

scan

pre

scan

pre

scan

b0

sum=0

reverse

join

split

split

final

scan

reverse

join

final

scan

final

scan

assign

b0

sum=0

b0

sum=0

b0

1 3 6 10

sum=10

b0

15 21 28 36

sum=36

b0

sum=136

b1

sum=0

b1

sum=26

b1

sum=26+10=36

b1

45 55 66 78

sum=78

b2

sum=0

b2

sum=42

b2

sum=36+42=78

b2

91 105 120 136

sum=136

Figure 9. parallel_scan sample execution.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

14 Instructor: Daniel Llamocca

✓ Subranges are processed from left to right.

✓ parallel_scan is in charge of distributing the workload, when to create and execute a body, and when to whether use

final_scan of pre-scan mode.

✓ is_final_scan(): It enables differentiation between pre_scan mode and final_scan mode.

✓ Body split and reverse join:

SumScan(SumScan& b, split) : z(b.z), y(b.y), sum(id) {}

void reverse_join(SumScan& a) { sum = a.sum + sum; }

 Split constructor: It specifies that body b is split into body b and a new body a (this name a is declared in the reverse

join method). The new body has the same input data (z, y, id). The new body is assigned a different subrange.

 Reverse join method: the results of bodies b and a are merged into body a (this is the reverse of join in

parallel_reduce). It is only the results that are merged, not the bodies.

✓ Assign summary of b to the current object: void assign(SumScan& b) { sum = b.sum; }

 The summary of the last subrange (being acted upon by a body b) is assigned to the current object (usually the first

one that was created).

✓ A lambda expression also exists. However, lambda expressions for parallel_scan only run starting from TBB Update 1

(2018). You need to update TBB in order for this lambda expression to work, otherwise it would not recognize this

parallel_scan with 4 arguments.
void main () {

 size_t z[16] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};

 size_t y[16], id = 0;

 int n = sizeof(z)/sizeof(z[0]);

 size_t sum = parallel_scan (blocked_range<size_t>(0,n), id,

 // Compute summary of range r

 [&z,&y] (const blocked_range<size_t> &r, size_t sum, bool is_final_scan) -> size_t {

 size_t temp = sum;

 for (size_t j = r.begin(); j < r.end(); j++) {

 temp = temp + z[j];

 if (is_final_scan) y[j] = temp;

 }

 return temp;

 },

 // Combine body

 [] (size_t left, size_t right) -> size_t {

 return left + right;

 }

);

 printf (“Result: %ld\n”, sum); for (int i=0; i < n; i++) printf (“y[%d] = %ld\n”,i,y[i]);

}

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

15 Instructor: Daniel Llamocca

PARALLEL_FOR_EACH

▪ This template function applies a function object f to each element in a sequence [first, last), possibly in parallel:
void parallel_for_each (InputIterator first, InputIterator last, const Func &f)

▪ This template function implements a workpile pattern. For some loops, the end of the iteration space is not known in

advance, or the loop body may add more iterations to do before the loop exits. This is a generalization of the map pattern,
where we add more to the “pile” of work to be done.

▪ A linked list is an example of an iteration space that is not known in advance. Moreover, accessing items in a linked list is
inherently serial.

TBB PARALLEL_FOR_EACH

▪ Unlike the other TBB directives, parallel_for_each explicitly requires us to work with sequential containers in C++ (e.g.:

vectors, lists).
✓ Lists: stores elements at non-contiguous memory locations (internally use a doubly linked list).
✓ Vectors: store elements at contiguous memory location (like an array)
✓ Insertion and deletion of elements is more efficient in lists than in vectors.
✓ A list does not allow for random access, whereas a vector allow for random access.

▪ parallel_for_each accesses the elements of the sequential containers via iterators. An invocation of parallel_for_each never

causes two threads to act on an input iterator concurrently
✓ iterator: object that points to an element in a range of elements and defines operator that can iterate through elements

in a range.

▪ Example: applying square root to each element of an array:

✓ The class Applysqrt specifies the details of the parallel_for_each (this is called the imperative form):
class Applysqrt {

public:

 void operator() (double &v) const {

 v = sqrt(v);

 }

};

✓ Using a ‘vector’:

using namespace std;

using namespace tbb;

int main () {

 int a[10] = {2,3,4,5,6,7,8,9,10,11};

 int i;

 vector <double> myarray; // declaration of an array that can change in size

 for (int i = 0; i < 10; i++) {

 myarray.push_back(a[i]); // push_back: adds elements at the end of vector

 }

 // Imperative form of parallel_for_each:

 parallel_for_each (myarray.begin(), myarray.end(), Applysqrt());

 // Lambda expression form:

 parallel_for_each (myarran.begin(), myarray.end(),

 [=] (double &elem) { elem = sqrt(elem); });

 for (i = 0; i < 10; i++) printf (“myarray[%d] = %6.4f\n”,i, myarray[i]);

 return 0;

}

 myarray.begin(): returns iterator pointing to first element of myarray.

 myarray.end(): returns iterator pointing to last element of myarray.

 We can access the individual elements of myarray directly (i.e., they provide random access).

✓ Example: (lists):

using namespace std;

using namespace tbb;

int main () {

 list <double> mylist = {3,4,5,6,7,8,9,10};

 mylist.push_front(2);

 mylist.push_back(11);

 // Printing the elements of the list:

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

16 Instructor: Daniel Llamocca

 // create iterator ‘it’. Note that we access the list via it (we print it).

 for (auto it mylist.begin(); it != mylist.end(); ++it) // cannot use it < mylist.end()

 cout << *it << endl;

 // Alternative printing method:

 for (double x: mylist) // variable x is used to iterate over the list elements

 cout << x << endl;

 // Imperative form of parallel_for_each:

 parallel_for_each (mylist.begin(), mylist.end(), Applysqrt());

 // Lambda expression form:

 parallel_for_each (myarran.begin(), myarray.end(),

 [=] (double &elem) { elem = sqrt(elem); });

 for (double x: mylist)

 cout << x << endl;

 return 0;

}

 The list can only be accessed sequentially.

▪ Note that in both examples, we know the size of the vector/list. However, these sequential containers allow for the

insertion/deletion of more elements in a dynamic fashion. This is where parallel_for_each is useful: while it is being executed,

it is conceivable that the list is still adding elements.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

17 Instructor: Daniel Llamocca

PIPELINING
▪ This is a common parallel pattern that mimics a traditional manufacturing assembly line. The following is a helpful explanation

(source: https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/pipelining/index.html):
“A useful method of demonstrating this is the laundry analogy. Let's say that there are four loads of dirty laundry that need
to be washed, dried, and folded. We could put the first load in the washer for 30 minutes, dry it for 40 minutes, and then
take 20 minutes to fold the clothes. Then pick up the second load and wash, dry, and fold, and repeat for the third and
fourth loads. Supposing we started at 6 PM and worked as efficiently as possible, we would still be doing laundry until
midnight.
However, a smarter approach to the problem would be to put the second load of dirty laundry into the washer after the first
was already clean and whirling happily in the dryer. Then, while the first load was being folded, the second load would dry,
and a third load could be added to the pipeline of laundry. Using this method, the laundry would be finished by 9:30.”

▪ Pipelines are found in:
✓ Instruction pipelines: The processor breaks the execution of an instruction into stages. Results of one stage are fed onto

the next stage. This allows multiple instructions to be in different stages of processing at the same time.
✓ Hardware pipelines: A digital circuit is divided into stages, results of one stage are fed into the inputs of the next stage.
✓ Software pipelines: A software routine can be thought of as a sequence of computing processes with the output stream

of one process being fed as the input stream of the next one. Two parallel execution choices:
 processor (or thread) assigned to execute the task of a single stage.
 processor (or thread) executes the entire pipeline. Data usually arrives sequentially. When the 1st data arrives,

processor 1 starts computation. When the 2nd data arrives, processor 2 starts computation, and so on. When the
number of processors is exhausted, we wait until processor 1 finishes its pipeline so it can start a new one.

(a)

(b)

Figure 10. Pipeline explanation. (a) normal sequential operation. (b) pipeline approach.

Source: https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/pipelining/index.html

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/pipelining/index.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

18 Instructor: Daniel Llamocca

PIPELINE MODEL FOR SOFTWARE

▪ Pipeline: linear sequence of stages. Data flows through the pipeline, from the first stage to the last stage.

✓ Stages of the pipeline can often be generated by using functional decomposition of tasks in an application.
✓ Data is partitioned into pieces (also called items or data units).
✓ Each stage performs a transform on the data (this transformation is called a task).
✓ A stage’s transformation of items maybe one-to-one or more complicated.
✓ Stages in a pipeline can be balanced (uniform processing time) or non-balanced (non-uniform).
✓ Type of pipeline stages:

 Serial stage: It processes one item at a time, though different stages can run in parallel.
 Parallel stage: It processes multiple items at once and can deliver output items out of order.

▪ Pipelines can be classified depending on the type of stages they contain:

✓ Serial Pipeline: Pipeline with only serial stages. The throughput of the pipeline is limited to the throughput of the slowest
serial stage, because every item must pass through that stage at a time.

✓ Parallel Pipeline: This pipeline includes parallel stages (it might include serial stages as well) to make it more scalable.

SERIAL PIPELINE
▪ Fig. 11 shows a pipeline with 4 stages. Data is fed to the pipeline in terms of data units (or items). For example, for data

unit ‘a’, Stage 1 applies a transform like S1(a), while Stage 2 applies a transform like S2(S1(a)), and so on. We call this a
serial pipeline, where each stage can only process one data unit at a time.

Pipeline with Uniform Stages

▪ Here, each stage has a uniform processing time of T cycles. Fig. 12 depicts an example with 5 data units and 4 stages.

✓ Sequential pipeline execution: This naïve approach is depicted in Fig. 12(a). We feed the first data unit ‘a’ and wait until
the final result from Stage 4 is computed. Then, we feed data unit ‘b’ and wait until we get the result from Stage 4. This
repeats until feed the last data unit (‘e’) and get the corresponding final result from Stage 4. The total computation time
is given by (5 × 4) × 𝑇 cycles.

✓ Concurrent pipeline execution: This is depicted in Fig. 12(b). If we continuously feed a new data unit right after Stage 1
has processed a previous data unit, we can expose parallelism (all stages will be busy after a little while). The total
computation time is given by (4 + 5 − 1) × 𝑇 = 8𝑇 cycles. This large reduction in computation time is an advantageous

feature of pipelining.

▪ For a pipeline with 𝑞 stages (each with a processing time T) that is continuously fed 𝑛 data units, we have that:

✓ Latency (total time for one item to go through the whole system): 𝑞 × 𝑇. This is also called initial latency (number of

cycles it takes to process the first data unit).
✓ Total Processing Time: (𝑞 + 𝑛 − 1) × 𝑇 cycles.

✓ Throughput (rate at which items are processed, in terms of data units per cycle):
𝑛

(𝑞+𝑛−1)×𝑇
=

1

(
𝑞−1

𝑛
+1)×𝑇

 In practice, 𝑛 can be very large and thus the throughput is given by:
1

(
𝑞−1

𝑛
+1)×𝑇

|
𝑛→∞

=
1

𝑇
 data units per cycle. This can

be interpreted as the rate at which new items are processed after the first one (i.e., after the initial latency).

Pipeline with Non-Uniform Stages
▪ When the processing times of the stages are non-uniform, the slowest stage limits the throughput. Unlike the case with

uniform stages, here we cannot guarantee that all stages will be necessarily operating at the same time.

Stage 1 Stage 2 Stage 3 Stage 4Data Units Result per Unit

Task 1 Task 2 Task 3 Task 4

a b c d e

a

b

c

d

e

a

b

c

d

e

(a) (b)

T

Figure 11 4-stage serial pipeline. Each task is performed by a separate stage. The example shows 5 data units that go through

the pipeline along with the final result per data unit.

Figure 12. (a) Sequential pipeline execution for 5 data units: it takes 20T cycles. (b) Concurrent parallel execution for 5 data

unit: it takes 8T cycles. Note how all stages are busy after some initial delay.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

19 Instructor: Daniel Llamocca

✓ Fig. 13(a) depicts the case where Stage 3 takes 1.5𝑇 cycles, while the other stages take 𝑇 cycles each. The latency is
4.5𝑇 cycles. The pipeline must wait until Stage 3 computes its result before feeding a new data to Stage 3. Thus, the

processing time is given by (4.5 − 1) × 𝑇 + (𝑛 − 1) × 1.5𝑇 + 𝑇 = 4.5 × 𝑇 + (𝑛 − 1) × 1.5𝑇. The throughput is given

by:
𝑛

(4,5+(𝑛−1)×1.5)×𝑇
=

1

(
4.5−1.5

𝑛
+1.5)×𝑇

. When 𝑛 → ∞, the throughput results in
1

1.5𝑇
.

✓ Fig. 13(b) depicts the case where Stage 2 takes 2𝑇 cycles, while the other stages take 𝑇 cycles each. The latency is 5𝑇

cycles. The pipeline must wait until Stage 2 computes its result before feeding a new data to Stage 2. Thus, the total
processing time is given by (5 − 2) × 𝑇 + (𝑛 − 1) × 2𝑇 + 2𝑇 = 5 × 𝑇 + (𝑛 − 1) × 2𝑇. The throughput is given by:

𝑛

(5+(𝑛−1)×2)×𝑇
=

1

(
5−2

𝑛
+2)×𝑇

. When 𝑛 → ∞, the throughput results in
1

2𝑇
.

▪ In general (for 𝑞 stages and 𝑛 data items), the total processing time is given by 𝐿 × 𝑇 + (𝑛 − 1) × 𝑓 × 𝑇 cycles, where 𝑓 × 𝑇

is the processing time of the largest stage (𝑓 > 1) and 𝐿 × 𝑇 is the latency. Note that this formula holds even if the other
stages are unbalanced. Also, a balanced pipeline (𝑇 cycles per stage) is a special case where 𝐿 = 𝑞 and 𝑓 = 1.

✓ Throughput:
𝑛

(𝐿+(𝑛−1)×𝑓)×𝑇
=

1

(
𝐿−𝑓

𝑛
+𝑓)×𝑇

 data units per cycle. When 𝑛 → ∞, the throughput results in
1

𝑓𝑇
, and as such it is

determined by the slowest stage.

TABLE III. SERIAL PIPELINE: PROCESSING TIMES. 𝑛: NUMBER OF ITEMS. T: NUMBER OF CYCLES OF THE SMALLEST STAGE

Serial Pipeline Processing Time (cycles) Throughput (data units per cycle) Comments

Uniform (each stage

takes T cycles)
(𝑞 + 𝑛 − 1) × 𝑇

𝑛

(𝑞 + 𝑛 − 1) × 𝑇
=

1

𝑇
, 𝑖𝑓 𝑛 → ∞ 𝑞: Number of pipeline stages

Non-Uniform (at least

one stage takes more

than T cycles)

𝐿 × 𝑇 + (𝑛 − 1) × 𝑓 × 𝑇
𝑛

(𝐿 + (𝑛 − 1) × 𝑓) × 𝑇
=

1

𝑓𝑇
, 𝑖𝑓 𝑛 → ∞

𝐿: factor of the pipeline latency (𝐿 × 𝑇)

𝑓: factor of the largest stage (𝑓 > 1)

PARALLEL PIPELINE
▪ This is a pipeline where at least one parallel stage is included. Fig. 14 depicts a 4-stage parallel pipeline, where Stage 2 is a

parallel stage.
▪ While a parallel stage can process multiple items at once, note that serial stages are usually present in a parallel pipeline.

As such, multiple items usually arrive to the parallel stage at different times. Nevertheless, if the processing time of the
parallel stage is larger than the serial stages, the processing of multiple items can be overlapped, thereby reducing the
overall processing time.

▪ The introduction of parallel stages introduces a complication to serial stages. In a serial pipeline, each stage receives items
in the same order. In a parallel pipeline, when a parallel stage intervenes between two serial stages, the later serial stage
can receive items in a different order than the earlier stage.

▪ Some applications require consistency in the order of items flowing through the serial stages, and usually the requirement
is that the final output order be consistent with the initial input order.

Parallel pipeline with Uniform Serial Stages
▪ Fig. 15 illustrates the difference between a serial stage and a parallel stage in a pipeline. Fig. 15(a) shows a serial pipeline

with a serial Stage 2, while Fig. 15(b) shows a parallel pipeline with serial stages and a parallel Stage 2. Stage 2 (whether
serial or parallel) processing time is 4𝑇 cycles, while the other stages take 𝑇 cycles.

✓ Serial pipeline: We must wait until Stage 2 computes is result before feeding a new data to it. The total processing time
is given by 7𝑇 + (𝑛 − 1) × 4𝑇 cycles, where 4𝑇 is the processing time of the largest stage and 7𝑇 is the latency.

✓ Parallel pipeline: Note how we can overlap the execution of up to 4 items in Stage 2. The total processing time is greatly
reduced to 7𝑇 + (𝑛 − 1) × 𝑇 cycles.

Stage 1 Stage 2 Stage 3 Stage 4Data Units Result per Unit

Task 1 Task 2 Task 3 Task 4

a b c d e

(b)(a)

T 1.5T 2T T

Figure 13. Pipelining for non-uniform stages. (a) Largest stage takes 1.5T cycles. Here, all the stages are busy at one point. (b)

Largest stage takes 2T cycles. Here, at most only 3 stages are busy at a time.

Figure 14. 4-stage parallel pipeline. Stage 2 is a parallel stage that can process multiple items concurrently.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

20 Instructor: Daniel Llamocca

▪ In general, a parallel stage takes 𝑝 × 𝑇 cycles (𝑝 ≥ 1). The processing time of a parallel pipeline with uniform serial stages

is given by 𝐿 × 𝑇 + (𝑛 − 1) × 𝑇 cycles, with an asymptotic throughput (𝑛 → ∞) of
1

𝑇
. If the parallel stage were a serial stage

instead (i.e., a non-uniform serial pipeline), the processing time would be: 𝐿 × 𝑇 + (𝑛 − 1) × 𝑝 × 𝑇 cycles, with an

asymptotic throughput (𝑛 → ∞) of
1

𝑝𝑇
. Thus, there is a speed-up of 𝑝, which is the result of overlapping execution of items.

✓ These formulas are valid even when there are other parallel stages, where 𝑝 is the factor of the largest parallel stage.

▪ Fig. 16 shows more examples with a parallel Stage 2:
✓ Fig. 16(a): 5𝑇 cycles for Stage 2. We can overlap the processing of 5 items. Processing time: 8𝑇 + (𝑛 − 1) × 𝑇 cycles.

✓ Fig. 16(b): 2𝑇 cycles for Stage 2. We can overlap the processing of 2 items. Processing time: 5𝑇 + (𝑛 − 1) × 𝑇 cycles.

✓ Fig. 16(c): All stages are uniform. Parallel Stage 2 (𝑇 cycles) has no advantage. Processing time: 4𝑇 + (𝑛 − 1) × 𝑇 cycles.

Parallel pipeline with Non-Uniform Serial Stages
▪ If the other serial stages are unbalanced, the processing time is given by 𝐿 × 𝑇 + (𝑛 − 1) × 𝑓 × 𝑇 cycles with an asymptotic

throughput (𝑛 → ∞) of
1

𝑓𝑇
., where 𝑓 is the factor (𝑓 > 1) of the largest serial stage. Fig. 17 shows two cases.

▪ The processing time of the parallel stage(s) get(s) absorbed into 𝐿 × 𝑇 factor. What limits the pipeline is the largest serial

stage. The processing times of the parallel stages do not limit the pipeline:
✓ For 𝑝 > 𝑓: If the parallel stage were a serial stage, the processing time would be 𝐿 × 𝑇 + (𝑛 − 1) × 𝑝 × 𝑇 cycles, with

an asymptotic throughput (𝑛 → ∞) of
1

𝑝𝑇
. Thus, there is a speed-up of 𝑝/𝑓 (the result of overlapping execution of items).

✓ For 𝑝 ≤ 𝑓: If the parallel stage were a serial stage, the processing time would be 𝐿 × 𝑇 + (𝑛 − 1) × 𝑓 × 𝑇. Here, there

is no speed-up (compared with a serial pipeline), i.e., the benefits of parallel stages are nonexistent.

TABLE IV. PARALLEL PIPELINE: PROCESSING TIMES. 𝑛: NUMBER OF ITEMS. T: NUMBER OF CYCLES OF THE SMALLEST STAGE

Parallel Pipeline Processing Time (cycles) Throughput (data units per cycle) Comments

Uniform serial stages (T

cycles each)
𝐿 × 𝑇 + (𝑛 − 1) × 𝑇

𝑛

(𝐿 + 𝑛 − 1) × 𝑇
=

1

𝑇
, 𝑖𝑓 𝑛 → ∞ 𝐿: factor of the pipeline latency

Non-uniform serial stages

(at least one takes more

than T cycles)

𝐿 × 𝑇 + (𝑛 − 1) × 𝑓 × 𝑇

𝑛

(𝐿 + (𝑛 − 1) × 𝑓) × 𝑇
=

1

𝑓𝑇
, 𝑖𝑓 𝑛

→ ∞

𝑓: factor of the largest serial stage

(𝑓 > 1)

(b)(a)

4T T T4T

(c)(a)

5T

(b)

2T T

(a)

2T4T

(b)

1.5T4T2T

Figure 15. (a) Non-uniform serial pipeline. Stage 2: largest serial stage that takes 4T cycles. (b) Parallel pipeline with uniform

serial stages. Stage 2: parallel stage with a processing time of 4T cycles.

Figure 16. Parallel pipeline execution. Stage 2 is parallel. (a) Stage 2 takes 5T cycles. (b) Stage 2 takes 2T cycles. (c) Stage 2

takes 1 cycle; here, the parallel nature of Stage 2 is not exploited.

Figure 17. Execution of parallel pipeline with non-uniform serial stages (Stage 2 is parallel). (a) Processing time: 6𝑇 + (𝑛 −

1) × 2𝑇 cycles. (b) Processing time: 8.5𝑇 + (𝑛 − 1) × 2𝑇 cycles.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

21 Instructor: Daniel Llamocca

PARALLEL_PIPELINE (TBB 3.0)
▪ Since a parallel stage might cause an ordering issue with the serial stages, Intel TBB defines three kinds of stages:

✓ parallel: processes incoming items (even when arriving out of order) in parallel.

✓ serial_out_of_order: Processes items one at a time, in arbitrary order.

✓ serial_in_order: Processes items one at a time, in the same order as the other serial_in_order stages in the

pipeline.
▪ The difference in the two kinds of serial stages has no impact on asymptotic speedup. The throughput of the pipeline is still

limited by the throughput of the slowest stage.

▪ A common representation of a serial pipeline is depicted in Fig. 18(a), while a parallel pipeline is depicted in Fig. 18(b). A

serial stage includes a feedback loop that represents updating its state, while a parallel stage does not include a feedback
loop. In these diagrams, the processing stages handle a sequence of data items (not just a single item).

▪ Two basic strategies for implementing a pipeline:

✓ Stage-bound workers: Serial stages have one worker, while parallel stages may have multiple workers. A worker
processes items as they arrive: it takes a waiting item, performs work, then passes items to the next stage. It is a simple
strategy (essentially the same as map), but no data locality for each item.

✓ Item-bound workers: Each worker handles an item at a time and carries the item through the pipeline. On finishing the
last stage, it loops back to the beginning for the next item. This is a more complex strategy, but it has much better data
locality for items (each item has a better chance of remaining in cache throughout pipeline). However, workers can be
stuck waiting at serial stages.

▪ The difference can be viewed as whether items flow past stages or stages flow past items. The two approaches have different

locality behavior. The bound-to-stage approach has good locality for internal state of a stage, but poor locality for the item.
Hence, it is better if the internal state is large and item state is small. The bound-to-item approach is the other way around.

▪ Hybrid approach: Based on the two basic strategies, the current implementation of TBB’s parallel_pipeline uses a modified

bind-to-item approach. Workers begin as item-bound.
✓ A worker picks up an available item and carries it through as many stages as possible.

✓ When entering a stage, the worker checks whether it is ready to process the item. If so, the worker continues into the
stage. Otherwise, it parks the item, leaving it for another worker to pick it up when the stage is ready to accept it, and
starts over.

✓ When leaving a serial stage (a worker finishes applying a serial stage to an item), the worker checks if there is a parked
item. If so, it spawns a new worker that unparks that item and continues carrying it through the pipeline.

✓ The approach retains good data locality without requiring workers to block at serial stages.

TBB SYNTAX

▪ Simplest common sequence of stages for a parallel pipeline (TBB: we use the keyboard parallel_pipeline) is serial-parallel-

serial, where serial stages are in order.
▪ Naming conventions: Data units (items) are called tokens. Stages are called filters.
▪ A stage is required to map one input item to one output item. The steps to build a pipeline in TBB are:

✓ A filter (stage) is built with filter_t<X,Y>. Type X is the input type; type Y is the output type.

 Exceptions: first stage (filter_T<void, …>) and the last stage (filter_t<…,void>).

Figure 18. (a) Serial pipeline. Each stage can maintain its state so that later outputs can depend on earlier ones. (b) Parallel

pipeline. The parallel stage is stateless; thus, multiple invocations of it can run in parallel.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

22 Instructor: Daniel Llamocca

✓ Glue stages together with operator &. The output type of a stage must match the input type of the next stage.

 From a system perspective, the result acts like a big stage. The top-level glued result is a filter_t<void,void>.

✓ Invoke parallel_pipeline on the filter_t<void,void>. The call must also provide an upper bound on the number of items

in flight (usually called ntokens).

▪ The parallel_pipeline function is a strongly typed lambda-friendly interface for building and running pipeline. To build and run

a pipeline from functors 𝑔0, 𝑔1, 𝑔2, … , 𝑔𝑛, the syntax is:

parallel_pipeline(ntoken, // maximum number of live tokens

 make_filter<void,I1>(mode0,g0) &

 make_filter<I1,I2>(mode1,g1) &

 make_filter<I2,I3>(mode2,g2) &

 ...

 make_filter<In,void>(moden,gn));

▪ In general, functor 𝑔𝑖 should define its operator() to map objects of type 𝐼𝑖 to objects of type 𝐼𝑖+1.

✓ Functor 𝑔0: special case, because it notifies the pipeline when the end of the input stream is reached. parallel_pipeline

passes a flow_control object fc to the input functor of a filter.

 𝑔0 must be defined such that the expression g0(fc) either returns the next value in the input stream, or

 If the input functor reaches the end of the input stream, it invokes fc.stop() and returns a dummy value. This

indicates there are no more items, and the currently returned item should be ignored.

▪ ntoken (maximum number of live tokens) parameter to parallel_pipeline:

✓ Sets a cap on the number of items that can be in processing at once.
✓ Keeps parked items from accumulating to where they eat up too much memory.
✓ Space is now bound by ntoken times the space used by serial execution.

Generic Layout
▪ This 3-stage parallel pipeline (serial-parallel-serial) is a helpful example. The functors are: 𝑔0, 𝑔1, 𝑔2.

parallel_pipeline (ntoken, // ‘filter_mode’ instead of ‘filter’ in latest tbb

 make_filter<void,T>(filter_mode::serial_in_order,

 [&](flow_control& fc) -> T {

 T item = g0(); // g0 returns an item of type T

 if(!item) { fc.stop(); return NULL; }

 return item;

 }) &

 make_filter<T,U> (filter_mode::parallel, g1) &

 make_filter<U,void>(filter_mode::serial_in_order, g2));

✓ Mode of each functor: filter_mode::serial_in_order for 𝑔0 and 𝑔2, filter_mode::parallel for 𝑔1.

✓ T, U : generic types. The output of each stage matches the input type of the next stage.

✓ Functors 𝑔1 and 𝑔2: They can be defined as i) Classes elsewhere. They may or may not have arguments, and ii) lambda

expressions inside parallel_pipeline.

✓ Functor 𝑔0 is defined with a lambda expression:

 The flow_control object fc is specified as [&](flow_control& fc) -> T, where T is output type of functor 𝑔0.

 Functor description: 𝑔0 returns successive items of type T when called. If there are no more items (if (!item)), it

invokes fc.stop() and returns a dummy value (NULL).

✓ Stage 1: functor 𝑔0 maps items from void to T. It uses other variables in the code to input items.

✓ Stage 2: functor 𝑔1 maps input items of type T to output items of type U. Items can be processed in parallel.

✓ Stage 3: functor 𝑔2 maps items from U to void and it uses other variables in the code to output items.

Example (with lambda expressions)
▪ 3-stage parallel pipeline (serial-parallel-serial) that returns the sum of squares of a sequence defined by [first,last). In

the C++ code, the three functors are specified as lambda expressions.
✓ Stage 1 (it feeds input data items into the pipeline): Each time it is invoked, it returns an item (from input array first)

or indicates that there are no more items. Its functor (𝑔0) returns successive items (pointers of type float*) when called,

eventually returning NULL when done.
✓ Stage 2: Parallel stage that maps an item of type float* to an item of type float. Its functor (𝑔1) returns the square

of the value pointed by a float* variable. The input to this stage is specified in 𝑔1 (float *p), and its type must match

the output type of the previous stage. The stage is parallel since we expect this operation to take the longest per item.
✓ Stage 3 (pipeline end point): It receives items (in order) of type float and accumulates them. Its functor (𝑔2) specifies

the input to the stage (float x). Syntax-wise, the stage has output; however, the generated data is placed in a variable

sum that is returned by the main SumSquare function.

▪ The C++ code is available below. ntoken = 16.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

23 Instructor: Daniel Llamocca

float SumSquare(float* first, float* last) {

 float sum = 0;

 parallel_pipeline (16, // ntoken = 16

 make_filter<void,float*>(filter_mode::serial_in_order,

 [&](flow_control& fc)-> float* { //functor g0: exprsn
 if(first < last) {

 return first++;

 } else {

 fc.stop();

 return NULL; }

 }) &

 make_filter<float*,float>(filter_mode::parallel,

 [](float* p) { return (*p)*(*p); }) &

 make_filter<float,void> (filter_mode::serial_in_order,

 [&](float x) { sum += x; }));

 return sum;

}

int main() {

 int i;

 float fi[101], *fo, ff;

 for (i = 0; i < 100; i++) fi[i] = i;

 fo = &fi[100]; // fi[100] will not be considered

 ff = SumSquare (fi, fo);

 cout << ff << "\n"; // sum of the squares of 0 to 99: 328350

 return 0;

}

✓ Note that we can read any input data in Stage 1, and we can modify input data and other variables in Stage 3.
✓ In general, for more complex operations, the functors are defined in classes.

▪ Fig. 19 depicts the pipeline and the operations at each stage. Note the execution of the pipeline with overlapping of
operations for Stage 2 (assigned a latency of 3𝑇 for example). Data is processed in batches of ntoken=16 items at most.

TABLE V. STAGES OF THE PIPELINE IN FIG. 19. STAGE INPUTS ARE FUNCTORS’ OPERATOR() PARAMETERS. STAGE PARAMETERS (IN BLUE) ARE

FUNCTOR’S INPUT PARAMETERS FED TO ITS PARAMETERIZED CONSTRUCTOR (USUALLY DATA MEMBERS).

Stage
input output Functor: input

parameters
Comments

syntax type syntax type

Stage 1 void return first++/NULL *float g0: first, last special: input to stage is a flow_control object

Stage 2 float *p float* return (*p)*(*p) float g1: none g1: no data members, but the stage has input

Stage 3 float x float void g2: &sum Data member implied in this expression

▪ Fig. 19 illustrates the advantages of pipelining compared to sequential execution. This example is intended to demonstrate

syntax mechanics, as it is not optimal to implement the calculation: parallel overhead would offset any execution time gains.

Throughput of the Pipeline
▪ This is the rate at which tokens flow through it and is limited by two constraints:

✓ First, if a pipeline is run with N tokens, then obviously there cannot be more than N operations running in parallel.
Selecting the right value of N may involve some experimentation. Too low a value limits parallelism; too high a value
may demand too many resources (for example, more buffers).

✓ Second, the throughput of a pipeline is limited by the throughput of the slowest sequential filter. This is true even for a
pipeline with no parallel filters. No matter how fast the other filters are, the slowest sequential filter is the bottleneck.
So, in general you should try to keep the sequential filters fast, and when possible, shift work to the parallel filters.

▪ To really benefit from a pipeline, the parallel filters need to be doing some heavy lifting compared to the serial filters.

Figure 19. Serial-parallel-serial pipeline. Table V includes more details. (a) Variables in blue are functor’s parameters fed to its

parameterized constructor. Stage 1 feeds input items into the pipeline. Parallel Stage 2 performs the squaring of an item (items can be

processed in parallel). Stage 3 accumulates the result one item at a time. (b) Sample execution with Stage 2 taking 3T cycles.

Stage 1 Stage 2 Stage 3

..
.

first

last

last-1

A
rra

y
 to

p
ro

ce
ss

T3T*float

sum

float

p

*p x sum=sum+x

𝑔0 𝑔1 𝑔2

(a) (b)

first

void void

&sumlast

	Threading Building Blocks
	Parallel_For
	TBB Syntax

	Parallel_invoke
	Parallel_Reduce
	TBB Syntax

	Parallel_Scan
	Parallel_for_each

	Pipelining
	Pipeline Model for Software
	Parallel_Pipeline (TBB 3.0)
	TBB Syntax

