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Unit 4 – Multi-core applications 
 

THREADING BUILDING BLOCKS 
▪ C++ template library for parallel programming on multi-core processors. It helps to leverage multi-core performance. 
▪ Computation broken down into tasks that can run in parallel. It manages and schedules threads to execute these tasks. 
▪ Intel TBB® enables you to specify logical parallelism instead of threads. TBB run-time library automatically maps logical 

parallelism onto threads in a way that makes efficient use of resources. 
▪ Used for shared-memory parallel programming and heterogeneous computing (intra-node distributed memory 

programming). Many parallel patterns can be implemented with TBB, e.g.: map, reduce, pipeline. 

▪ The set of generic parallel algorithms available in TBB is shown in Table I. Template functions covered here: parallel_for, 

parallel_invoke, parallel_reduce, parallel_pipeline 

▪ References: 
✓ Intel® Threading Building Blocks – Handbook. Intel® TBB is now called Intel oneAPI TBB (oneTBB). 
✓ M. McCool, A. Robison, J. Reinders, “Structured Parallel Programming: Patterns for Efficient Computation” 
✓ M. Voss, R. Asenjo, J. Reindeers, “Pro TBB: C++ Parallel Programming with Thread Building Blocks”. 

 

TABLE I. GENERIC ALGORITHMS IN THE TBB LIBRARY 
Category Generic Algorithm Brief Description 

Functional parallelism parallel_invoke Evaluates several functions in parallel 

Simple loops 

parallel_for Map pattern over a range of values 

parallel_for_each  Map pattern over an iterator (parallel_do w/o work feeder) 

parallel_reduce  Reduction pattern over a range of values 

parallel_deterministic_reduce  
Reduction pattern over a range of value with deterministic 

split/join behavior 

parallel_scan Scan pattern (partial reductions) over a range of values 

Complex loops parallel_do 

Workpile pattern: loop where the iteration space is 

unknown in advance and more iterations can be added 

before the loop exits. 

Sorting parallel_sort Parallel sort of elements of a sequence 

Pipeline 
pipeline Implementation of software pipeline 

parallel_pipeline Strongly typed functions for pipelined execution 

 

PARALLEL_FOR 
▪ This template function allows us to implement a map pattern.  Fig. 1(a) depicts the serial execution of a loop. Though there 

are no dependencies between loop iterations, we still need to run the iterations sequentially. Fig. 1(b) depicts the map 
pattern, where a function is applied to all elements of a collection, usually producing a new collection with the same shape 
as the input. Here, we can execute all iterations in parallel given enough processors. 

  

(a) (b)
Figure 1. (a) serial loop execution. (b) map pattern: a function is applied to all elements of a collection. 

Rounded rectangles represent data. Rectangles represent tasks. 

https://oneapi-spec.uxlfoundation.org/specifications/oneapi/latest/elements/onetbb/source/nested-index
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▪ The map pattern replicates a function over every element of an index set. The function must have no side-effects in order 
for the map to be implementable in parallel while achieving deterministic results. Also, it must not modify global data that 

other instances of the function depend on. The map pattern can replace a serial loop where: 
✓ Every iteration is independent. 
✓ The number of iterations is known in advance.  
✓ Every computation depends only on the iteration count and data read using the iteration count as an index into a 

collection. 
 

TBB SYNTAX 

▪ For example: We want to apply a function Fun to every element of an array. We can either: 

✓ Update a[i] itself. Example: Fun(a[i]): 𝑎[𝑖] ← 𝑎[𝑖] × (𝑎[𝑖] + 1) 

✓ Define another array (e.g. b[i]) onto which we place the results.  

 
▪ Sequential implementation (the iteration space is of type size_t and goes from 0 to n-1) 

void SerialApplyFun( float a[], size_t n ) { 

    for( size_t i=0; i!=n; ++i ) 

        a[i] = a[i]*(a[i]+1); // Fun(a[i]) 

} 

✓ body’: For a function, this is the code enclosed within the curly brackets: { … }.  

 

▪ Concurrent Implementation: The template function parallel_for breaks the iteration space (0 to n-1) into chunks and launches 

the operations for each chunk on a separate thread. Put it another way, parallel_for divides up the iterations into tasks and 

provides them to the Task Scheduler for parallel execution. 
 
▪ To specify the iteration space and the chunks, we use the blocked_range template class provided by the library. It is a one-

dimensional iteration space over the specified type. 

✓ blocked_range <type> (i,j, grain_size): Half-open range: [i,j). type: size_t, int, etc. grain_size = 1 by default. 

For example: 
 blocked_range<int>(0,5): Range [0,5) with grain size of 1  [0 1 2 3 4] 

 blocked_range<int>(5,14,2): Range [5,14) with grain size of 2  [ 5 7 9 13] 

 
METHOD WITH A CLASS 

▪ Here, we use a class to define the operation applied to every element. Then, we call parallel_for. 

✓ Class: 
class ApplyFun { 

    float *const my_a; // 'private' access (default access level) 

public: 

    void operator()( const blocked_range<size_t> &r ) const { 

        float *a = my_a; 

        for( size_t i=r.begin(); i!=r.end(); ++i ) 

           a[i] = a[i]*(a[i]+ 1) // Fun(a[i]); 

    } 

    ApplyFun( float a[] ) : my_a(a) {} 

}; 

 The body of the SerialApplyFun function was converted into a form (ApplyFun) that operates on a chunk. This 

form is a STL (standard template library)-style function object, called the body object (or body), in which 
operator() processes a chunk. 

 Function applied to every element: 𝑓(𝑎[𝑖])  =  𝑎[𝑖] ∗ (𝑎[𝑖] + 1). 
 Range argument to loop template: const blocked_range<type> &r, const blocked_range<type> r. This defines 

&r and r as a blocked range of ‘type’. The actual range boundaries are not defined here. 

 operator() loads my_a into local variable a. Though not necessary, we do this because: 

 Style: it makes the loop body look more like the original. 
 Performance: The compiler may optimize better if we put frequently accessed values into local variables. 

 

✓ Using parallel_for: Here, we embed parallel_for in a function, but this is optional. 
Using namespace tbb; 

void ParallelApplyFun( float a[], size_t n ) { 

    parallel_for(blocked_range<size_t>(0,n), ApplyFun(a) ); 

} 

 Iteration space: blocked_range<size_t>(0,n). This is a half-open range [0,n) = [0,n-1]. 

 

▪ TBB parallel_for recursively (range splits into two subranges, each of which can split into two subranges, and so on) splits 

the range [0,n) into subranges and makes copies of the body (ApplyFun) for each of these subranges (argument r in 

operator()). For each such body/subrange pair, it invokes operator(): each subrange r is processed by the sequential 
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loop. The range and subranges are implemented as blocked_range objects. When worker threads are available, parallel_for 

may execute iterations in non-deterministic order. Fig. 2 shows an example of execution. 
▪ An instance of ApplyFun needs member fields that remember all the local variables that were defined outside the original 

(large) loop but used inside it. These fields will be usually initialized by the constructor for the body object. 
 

▪ TBB parallel_for requires the body object to have a copy constructor, which is invoked to create a separate copy (or copies) 

for each worker thread. It also invokes a destructor to destroy these copies. In most cases, the implicitly generated copy 
constructor and destructor work correctly. 
✓ Since the body object may be copied, the operator() should not modify the body, otherwise the modification may or 

may not become visible to the original thread, depending upon whether operator() is acting on the original thread or 

a copy. Hence, the body object’s operator() must be declared const (so it can’t modify the object on which it is called)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LAMBDA EXPRESSIONS 
▪ Available in the Version 11.0 of the Intel® C++ Compiler. They are very useful when using libraries like TBB to specify the 

user code to execute a task. They are used to create anonymous function objects. 
▪ Basic syntax: [capture-list] (params) -> ret { body} 

✓ capture-list: comma-separated list used to make the variables outside the lambda expression accessible inside the 

lambda expression, via copy or reference. 
 We capture a variable by value by listing the variable name in the capture-list. 

 We capture a value by reference by prefixing with &. And we can use this to capture the current object by reference. 

 There are also defaults: 
 [=]: captures all automatic variables used in the body by value and the current object by reference. 

 [&]: captures all automatic variables used in the body and the current object by reference 

 []: captures nothing. Allowed in some circumstances. 

✓ params: list of function parameters (optional), just like for a named function. If no function parameters use () or omit. 

✓ ret: return type. If ->ret is not specified, it is inferred from the return statements 

✓ body: function body 
 

▪ Examples: 
✓ [i, &j] (int k0, int &l0) -> int { j=2*j; k0 = 2*k0; l0 = 2*l0; return i+j+k0+l0; }; 

 It captures i by value, j by reference. It has a parameter k0, and another parameter l0 that is received by reference. 

 We can think of a lambda expression as an instance of a function object, but the compiler creates the class definition 

for us. The lambda expression is analogous to an instance of this class: 
class Functor { 

   int my_i; 

   int &my_jRef; 

public: 

   Functor (int i, int &j): my_i {i}, my_jRef{j} {} 

   int operator () (int k0, int &l0) { 

      myjRef = 2 * my_jRef; k0 = 2 * k0; l0 = 2*l0; 

      return my_i + my_jRef + k0 + l0; 

   } 

}; 

✓ [&] (float x) -> float { return x++; } 

✓ [] () { cout << “This is a lambda expression” << endl; } 

✓ [] { funct (parameters) } 

 We can invoke function funct and specify its parameters. Note that this lambda expression captures nothing, has no 

parameters (() could have been used but was omitted) nor return type. 

Figure 2. parallel_for execution example for parallel_for(blocked_range<size_t>(0,n), ApplyFun(a)) for n=12. Here, 

the iteration space is partitioned into 4 chunks (subranges) to be executed concurrently. Each chunk is processed by a body (copies 

are made as needed for each chunk). Within each chunk, the processing is sequential. 

for (i=9; i!=12; ++i)

a[i] = a[i]*a[i]+1;
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▪ Whenever we use a C++ lambda expression, we can substitute it with an instance of a function object. C++ lambda 
expressions simplify the use of TBB by eliminating the need of defining a class for each use of a TBB algorithm. 

 

▪ This makes parallel_for much easier to use as it lets the compiler do the tedious work of creating the function object. 

 
✓ Normal lambda expression: It replaces both the declaration and construction of the function object ApplyFun in the 

previous example: only one call to parallel_for is required. 
parallel_for( blocked_range<size_t>(0,n), [&](const blocked_range<size_t> r) { 

   for(int i=r.begin(); i!=r.end(); ++i) // 0 <= i < n 

      a[i] = a[i]*(a[i]+1); // Fun (a[i]) 

  } ); 

 The lambda expression creates a function object very similar to ApplyFun. 

 

✓ Compact lambda expression: TBB has a form of parallel_for expressly for parallel looping over a consecutive range of 

integers (parallel_for (first, last, step, f)   for (i=first; i< last; i+=step) f(i)). The step parameter is optional. 

 
parallel_for(size_t(0), size_t(n), [&] (size_t i) { // 0 <= i < n 

   a[i] = a[i]*(a[i]+1); // Fun(a[i]); 

 } ); 

 
 
RACE CONDITIONS 

▪ parallel_for assumes that the body of the loop is thread-safe, i.e.,  it does not have race conditions. It is then important to 

ensure that variables inside loop only depend on the index of the loop. Otherwise the threads might interact with each other 
updating variables at the wrong time. 

 
▪ Here, we show how to do create thread-safe implementations when every iteration in the loop is independent and every 

computation depends on the iteration index and data read using that index. Otherwise, you need to use advanced 
synchronization mechanisms (e.g: atomic operations, mutual exclusions). 

 
▪ For example, we want to apply the following operation to 100-element vector �⃗� of type int. The result 𝑣𝑜⃗⃗⃗⃗⃗ should also be 

of type int. 

𝑣𝑜[𝑖] = 𝑟𝑜𝑢𝑛𝑑 ((
𝑣[𝑖]

256
)

0.7

) × 256 

 
▪ This is a straightforward operation; the following is a typical sequential implementation: 

... 

double tmp, aux; 

int *vi, *vo; 

vi = (int *) calloc (100,sizeof(int)); 

vo = (int *) calloc (100,sizeof(int));    

... 

for (i = 0; i < 100; i++) { 

   tmp = ( (double) vi[i]) /256; 

   aux = pow(tmp,0.7)*256;    

   vo[i] = (int) (aux + 0.5); // Rounding + Saturation    

} 

... 

✓ In this simple operation, we use temporal variables tmp and aux in order to make the code more readable. 

 

▪ Using TBB, we can replace the for loop with parallel_for (compact lambda expression): 
tbb::parallel_for (int(0), int(100), [&] (int i) { // 0 <= i < 100 

          tmp = ( (double) vi[i]) /256; 

          aux = pow(tmp,0.7)*256;    

          vo[i] = (int) (aux + 0.5);    

        } ); 

✓ The code inside the loop is not thread-safe. The threads interact causing tmp and aux to be updated by other threads 

that are not associated with the corresponding thread. This might cause race conditions. 

 Note that the race condition can be a rare occurrence. In this example, we found race conditions for large vector 
sizes (> 10,000) and it only affected a few data points. These race conditions can be very difficult to spot. 
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Thread-safe implementations 
▪ First approach: we declare tmp and aux as vectors that depend on the iteration index. This way, every thread will only access 

its respective tmp[i] and aux[i]. 
double *tmp, *aux; 

tmp = (int *) calloc (100,sizeof(int));    

aux = (int *) calloc (100,sizeof(int));    

 

tbb::parallel_for (int(0), int(100), [&] (int i) { // 0 <= i < 100 

          tmp[i] = ( (double) vi[i]) /256; 

          aux[i] = pow(tmp[i],0.7)*256;  

          vo[i] = (int) (aux[i] + 0.5);    

        } ); 

✓ While this approach works, it is inefficient if the operation inside the loop is more complex (like requiring extra loops and 
conditions). 

 
▪ Second approach (using functions): This is the recommended approach, where we encapsulate the function Fun[i] (applied 

to every element of the array) in a function. 
int Fun (int *di, int k) { 

  double tmp, aux, result;     

    tmp = ( (double) di[i]) /256; 

    aux = pow(tmp,0.7)*256;  

    result = (int) (aux + 0.5); 

    return result; 

} 

... 

tbb::parallel_for (int(0), int(100), [&] (int i) { // 0 <= i < 100 

          vo[i] = Fun(vi, i);    

       } ); 

✓ Note that every iteration must be independent of each other. Every computation must depend only on the iteration index 
and data read using the iteration index as an index into the collection. 
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PARALLEL_INVOKE 

▪ Perhaps the simplest algorithm provided by the TBB library. This template function allows us to implement a map pattern. 

▪ parallel_invoke executes a list of (2 to 10) tasks in parallel and waits for all tasks to complete. This is different than parallel_for. 

▪ To execute functors 𝑓0, 𝑓1, 𝑓2, … , 𝑓9, the syntax is: 

 
parallel_invoke(const Func0& f0, const Func1&f1, ..., const Func9& f9); 

 
✓ Each argument must have a type for which the operator() is defined. 

✓ Note that the arguments are usually function objects (functors), though they can also be pointers to functions or lambda 
expressions. 

 
▪ Basic example with lambda expressions: 

int main () {   

   parallel_invoke ( 

           [] () { cout << “Hello “ << endl;}, 

           [] () { cout << “TBB! “ << endl;} 

   ); 

   return 0; 

} 

✓ Lambda expressions avoid creating function objects (functors) when using parallel_invoke. 

 We use lambda expressions to specify the functions: this can include expressions and calls to functions. 
✓ Note that the resulting output may contain either Hello or TBB! First. There might not even be newline character 

between the two strings and two consecutive headlines at the end of the output. 
 

▪ Example with functors, function pointers, and lambda expressions: 
void bar (int a) { 

  int t; 

  t = a*a*a; 

  cout << "(bar) a^3 = "<< t << "\n"; 

} 

 

class MyFunctor { 

   int arg; 

public: 

   MyFunctor(int a): arg(a) {} 

   void operator() () const { bar(arg);} 

}; 

 

void f () { 

  cout << "(function ) executed!\n"; 

} 

 

int main () {   

   MyFunctor g(2); 

   MyFunctor h(3); 

 

   // f,g,h evaluated in parallel   

   parallel_invoke(f,g,h); // f: pointer to function. g,h: functors 

 

   // f and bar(1) evaluated in parallel 

   parallel_invoke(f, []{ bar(1); }); // lambda expression (no need to create function object) 

   return 0; 

} 

 
✓ parallel_invoke(f,g,h): If the three function invocations execute for roughly the same amount of time and there are 

no resource constraints, this parallel implementation can be completed in a third of the time it takes to sequentially 
invoke the functions one after the other. 

✓ parallel_invoke(f, []{ bar(1); }): We can use lambda expressions to avoid creating function objects. We could 

also do: parallel_invoke (f,g,h, []{ bar(1); }).  

 
 

✓ Recall that it is the responsibility of the developer to invoke functions in parallel only when they can be safely executed 
in parallel. TBB will not automatically identify dependencies and apply synchronization and other parallelization strategies 
to make the code safe. 
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PARALLEL_REDUCE 

▪ This template function allows us to implement a reduction pattern. A reduction combines every element in a collection into 

a single element using an associative combiner function. 
▪ A reduction can be implemented as a serial loop, where there is data dependency, as depicted in Fig. 3(a). However, Fig. 

3(b) shows how a reduction can be parallelized using a tree structure. Note that the tree parallelization of the reduction is 
implemented using the same number of operations as the serial version. A very common example of a reduction is the 
accumulation of all elements in a collection. 

▪ Reductions can use operations other than accumulation, such as maximum, minimum, multiplication, Boolean operations. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TBB SYNTAX 
▪ Example: Applying the reduction operation (accumulation of cubes). ∑ 𝑓(𝑎[𝑖])𝑛−1

𝑖=0 , 𝑓(𝑎[𝑖]) = 𝑎[𝑖] × 𝑎[𝑖] × 𝑎[𝑖]. 

✓ Using parallel_reduce, where we indicate the iteration space, as well as the object: 

float ParallelSumFun( float a[], size_t n ) { 

    SumFun sf(a); // Object ‘sf’ created with argument a 

    parallel_reduce(blocked_range<size_t>(0,n), sf ); 

    return sf.my_sum; } 

 The reduction is applied to range [0,n) for object sf. 

 
✓ The class SumFun specifies the details of the reduction (e.g.: how to accumulate subsums and combine them): 

class SumFun { 

    float * my_a; // 'private' access (default access level) 

public: 

    float my_sum; 

 

    void operator()( const blocked_range<size_t> &r ) { 

        float *a = my_a; 

        float sum = my_sum; 

 

        for ( size_t i=r.begin(); i!=r.end(); ++i ) 

           sum += a[i]*a[i]*a[i]; // Associative combiner function 

        my_sum = sum; 

    } 

    SumFun (SumFun &x, split): my_a(x.my_a), my_sum(0) {} // my_a = x.my_a, my_sum = 0 

    void join (const SumFun &y) { my_sum += y.my_sum; } 

    SumFun (float a[]): my_a(a), my_sum(0) {} // my_a = a, my_sum = 0 

}; 

 SumFun: the operator() is not const. This is because we need to be able to update my_sum. 

(a) (b)

Figure 3. Reduction. (a) serial implementation. (b) parallel implementation. 
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 The class SumFun has a splitting constructor and a join method that must be present for parallel_reduce to work. 

 Splitting constructor: SumFun (SumFun &x, split): my_a(x.my_a), my_sum(0) {}. This represents the  splitting 

of body x into x a newly constructed body y: SumFun y (x, split). We fork a body (function object) to allow 

concurrent execution. Arguments: a reference to the original object (x), and an argument of type split (defined 

by the library to distinguish the splitting constructor from a copy constructor). 
 Join method: void join (const SumFun &y) { my_sum += y.my_sum; }. This represents the merging of the 

results of bodies x and y: x.join(y). Body name y: declared here, it is implicitly used in the splitting constructor. 

 Function applied to every element: 𝑓(𝑎[𝑖]) = 𝑎[𝑖] × 𝑎[𝑖] × 𝑎[𝑖]. 
 Associative Combiner function: Scalar addition 

 
TBB parallel_reduce operation 

▪ TBB parallel_reduce first recursively splits the range [0,n) into subranges. 

▪ Then, it assigns each subrange to a body: it recursively attempts to split a body.  

✓ If worker threads are available, parallel_reduce invokes the splitting constructor for a body. For each such split of the 

body, it invokes the join method to merge the result of the bodies. 

 Fig. 4(a) depicts the split of a body x into x and a new body y (iteration range is first split into two subranges), where 

each body performs the reduction of a subrange, and then join is used to merge the results of the two bodies. 

✓ If worker threads are not available, parallel_reduce does not invoke the splitting constructor for a body. For a range divided 

into two subranges, the second subrange is reduced using the same body that reduced the first subrange.  
 Fig. 4(b) depicts this case, where the same body performs the reduction of the two subranges. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4. (a) Body x is split into x and y, where each perform the reduction of a subrange. The results are merged via the merge 

method.  (b) Body x is not split: it processes both subranges; thus the operator() in the body cannot discard earlier accumulations. 
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▪ With the subranges assigned to bodies (not necessarily all different bodies), the reduction for each subrange is computed. 
Finally, the join method (if applicable) is used recursively until the final result is computed. 

✓ If each subrange is assigned to a different body, then all reductions are executed concurrently. 
✓ For a range that is divided recursively into many subranges, when assigning each subrange to a body, we may have the 

following cases along the way: 
 A body splits. Each of the resulting bodies may or may not split. 
 A body did not split (the same body must process two subranges). Each time the body operates on a subrange, it 

may split (or not) into two bodies. 

✓ It is possible that each range is assigned to the same body. Here, parallel_reduce runs sequentially from left to right. 

Sequential execution never invokes the splitting constructor or method join. 
 

▪ Note that parallel_reduce may copy a body while the body’s operator() or method join runs concurrently. 

 

▪ Fig. 5 depicts a parallel_reduce operation example. The range is recursively split at each level into two subranges, until we 

are left with four subranges (r0, r1, r2, r3). Then, we assign each subrange to a body. Here, the Task Scheduler lets us 

have a different body (b0, b1, b2, b3) for each subrange. Then, all bodies concurrently execute their reduction. The join 

method is used recursively to merge the results of two bodies: first, we merge two sets of bodies (b0 and b1 into b0, b2 and 

b3 into b2), then we merge the result of two bodies (b0 and b2 into b0).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

▪ Fig. 6 depicts a parallel_reduce operation example, where not all subranges can be assigned to a different body. Here, the 

Task Scheduler lets us have a different body (b0, b1, b2) for subranges r0, r1, r2, but b2 is assigned to r3 as well. Then, 

only b0, b1, b2 can execute concurrently. The join method is used recursively to merge the results of two bodies: first, we 

merge b0 and b1 into b0, then we merge b0 and b2 into b0. Here, b2 reduces two subranges (r2, r3) sequentially from left 

to right: b2 reduces r2 first, then b2 reduces r3. 

✓ Because the same body (b2) is used to merge multiple subranges, the operator() cannot discard earlier accumulations. 

 Initializing sum = 0 in operator() is incorrect, as the body would return a partial sum only for the last subrange. 

✓ Instead, my_sum = sum ensures that the b2 returns the accumulated sum of all the subranges that b2 reduced. This is 

illustrated in Fig. 6, where when processing subrange r3, our initial sum is the partial sum of subrange r2. 

  

Figure 5. parallel_reduce execution example for range [0,12). The iteration space is partitioned into 4 chunks. Each chunk is processed by a 

different body. Within each chunk, the processing is sequential. Partial results (from different bodies) are merged recursively. 
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TBB parallel reduce as map and reduce 

▪ In our application example ∑ 𝑓(𝑎[𝑖])𝑛−1
𝑖=0 , 𝑓(𝑎[𝑖]) = 𝑎[𝑖] × 𝑎[𝑖] × 𝑎[𝑖], a function f is applied to every element 𝑎[𝑖], and then 

the resulting 𝑓(𝑎[𝑖]) are added up. This operation could be implemented as: 

✓ Using parallel_for (map pattern) to compute 𝑓(𝑎[𝑖]) for 𝑖 = 0, … 𝑛 − 1. 

✓ Using parallel_reduce (reduction pattern) to compute ∑ 𝑓(𝑎[𝑖])𝑛−1
𝑖=0 . 

▪ In our implementation, we only used parallel_reduce where we effectively computed each 𝑓(𝑎[𝑖]) and ∑ 𝑓(𝑎[𝑖])𝑛−1
𝑖=0 . This 

effectively implements the map and reduction pattern: when the subranges are computed concurrently, the computation of 
the 𝑓(𝑎[𝑖]) in different subranges is also concurrent. Note that within a subrange, the computation of 𝑓(𝑎[𝑖]) is sequential, 

as it would be the case in a subrange created by parallel_for.  

▪ Either approach would work similarly, but note that launching only parallel_reduce may be more optimal (time, resources) 

than launching both parallel_for and parallel_reduce. 

 
Example: body splitting for a different range:  

▪ Fig. 7 shows different assigning of subranges to bodies when applying parallel_reduce over blocked_range<int>(0,20,5). 

The smallest non-divisible subrange is a 5-element subrange. After range splitting, we ended up with four subranges. When 
assigning a subrange to a body, more bodies are created (split) depending on the availability of worker threads  (the ‘/’ 

mark denotes where copies of a body were created by the splitting constructor): 
✓ Fig. 7(a): Three bodies. b0 splits into b0 and b2. Then b0 splits again into b0 and b0. b2 does not split. b0 processes 

subrange [0,5), b1 processes [5,10). Body b2 processes subranges [10,15) and [15,20) (in that order: left to right). 

On the way back up the tree, parallel_reduce invokes b0.join(b1) and b0.join(b2) to merge the results of the leaves. 

✓ Fig. 7(b): Four bodies. This is similar to the case of Fig. 7(a), but b2 does split into b2 and b3.  

✓ Fig. 7(c): Two bodies. b0 splits into b0 and b1. b0 processes the subranges [0,5), [10,15), [15,20), while b0 processes 

the subrange [5,10). On the way back up the tree, b0 merges with b1: b0.join(b1). As b0 processes the subranges 

(including merging with the result of b1), it accumulates the partial sums into a total sum. 

✓ Fig. 7(d): One body (no worker threads available). Here, parallel_reduce executes sequentially from left to right. There is 

no splitting or join calls. Here, 𝑏0 evaluates each of the four subranges in left to right order. 

 
 
 
 
 
 

Figure 6. parallel_reduce execution example for range [0,12). Here, the iteration space is partitioned into 4 chunks. Only three chunks 

are processed by different bodies. Body b2 executes the reduction of r2 and r3 sequentially, just accumulating the partial results. 
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Figure 7. Sample executions of parallel_reduce. (a) 3 bodies: b2 sequentially processes two subranges (b) 4 bodies: each subrange is 

processed concurrently. (c) 2 bodies. (d) 1 body: fully sequential operation over the four subranges. 
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PARALLEL_SCAN 

▪ This template function implements a scan pattern in parallel. A scan operation (reduction with intermediate values) 

generates all partial reductions of an input sequence, resulting in a new output sequence. 
▪ Table II shows the mathematical definition of the scan operation: let  be an associative operation with a constant element 

id. Input sequence: 𝑧0, 𝑧1, … 𝑧𝑛−1. Output sequence: 𝑦0, 𝑦1, … , 𝑦𝑛−1. 

 

TABLE II. MATHEMATICAL DEFINITION OF SCAN OPERATION AND ITS SERIAL IMPLEMENTATION 
Generic Scan Operation Serial implementation  

𝑦0 = id𝑧0 
𝑦1 = 𝑦0𝑧1 
… 
𝑦𝑖 = 𝑦𝑖−1𝑧𝑖 
… 
𝑦𝑛−1 = 𝑦𝑛−2𝑧𝑛−1 

size_t tmp; // or double tmp 

 

tmp = id; 

for i = 1:n 

   tmp = tmp  z[i] 
   y[i] = tmp; 

end 

 
▪ Despite the loop-carried dependency, the scan operation can be parallelized. Like reduction, we can take advantage of the 

associativity of the combiner function to reorder operations. 
✓ However, unlike reduction, parallelizing scan comes at the cost of redundant computations. 

 
▪ Parallel scan is performed by reassociating the application of  and using two passes (it may invoke  up to twice as many 

times as the serial algorithm). Fig. 8(a) depicts the serial implementation, while Fig. 8(b) depicts one possible parallel 
implementation of the scan pattern. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
TBB PARALLEL_SCAN 
▪ The range is divided by the TBB library into chunks and TBB tasks are created to apply the body (scan) to these chunks.  

✓ Prefixes: intermediate results for each element in the range, i.e., y[i]. 

▪ However, the scan body may be executed more than once on the same chunk of iterations: first in a pre-scan mode and then 

later in a final-scan mode. So, TBB parallel_scan involves two passes, of which the pre-scan pass is not always executed.  

✓ pre-scan mode: the body is passed a ‘starting’ (partial) prefix value for the element that precedes its subrange. It returns 

a partial (not yet final) prefix for the last element in its subrange. This is the result (also called summary) of the reduction. 

The prefixes y[i] are not updated. 

✓ final-scan mode: the body is passed an accurate (final) prefix value for the element that precedes its subrange. It returns 

the (final) prefixes for each iteration in is subrange (including the one for the last element, i.e., the results of the 
reduction). Scan results are computed and returned (i.e., the prefixes y[i] are updated) 

Figure 8. Scan pattern (a) serial implementation. (b) parallel implementation 
(a) (b)
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▪ Example: Scan operation applied to summation, i.e., operator   +. 

✓ The parallel_scan template indicates the iteration space, as well as the object: 
void main () { 

   size_t z[16] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}; 

   size_t y[16], id = 0;  

   int n = sizeof(z)/sizeof(z[0]); 

   

   SumScan sf(y,z,id); // Object ‘sf’ created with arguments y, z, and id 

   parallel_scan(blocked_range<size_t>(0,n), sf); 

   printf (“Result: %ld\n”, sf.sum); for (int i=0; i < n; i++) printf (“y[%d] = %ld\n”,i,y[i]); 

} 

 

✓ The class SumScan specifies the details of the parallel_scan (this is called the imperative form): 
class SumScan { 

    size_t id; 

    size_t* y; 

    const size_t* z; 

public: 

    size_t sum; 

    SumScan(size_t y_[], const size_t z_[], size_t id_) : sum(id_), z(z_), y(y_), id(id_) {} 

 

    template <typename Tag> 

    void operator()( const blocked_range<size_t> &r, Tag) { // accumulate summary for range r 

       size_t temp = sum; 

       for( int i = r.begin(); i < r.end(); ++i ) { 

           temp = temp + z[i]; 

           if( Tag::is_final_scan() ) // bool is_final_scan(): true for a final_scan_tag, else false 

                y[i] = temp; // scan result 

       } 

       sum = temp; // summary: from final_scan or pre_scan 

    } 

    SumScan( SumScan& b, split ) : z(b.z), y(b.y), sum(id) {} // split constructor 

    void reverse_join(SumScan& a) { sum = a.sum + sum; } 

    void assign( SumScan& b ) { sum = b.sum; } 

}; 

 

✓ Fig. 9 depicts a possible execution of parallel_scan. Range z[0:15]: Split into 4 subranges; a body operates on a subrange. 

 First body b0 is created and assigned 

the 1st subrange. 

 b0 is split: b0 and b2 (assigned the 

3rd subrange). 

 b0 is split (again): b0 and b1 

(assigned the 2nd subrange). 

 Body b0 executes in final_scan 

mode. Result: y[0:3], b0.sum=10. 

 Body b1 executes in pre_scan mode. 

y[3]: inaccurate. Result: b1.sum=26. 

 Body b2 executes in pre_scan mode. 

y[7]: inaccurate. Result: b2.sum=42. 

 Reverse join of b1 and b0 into b1: add 

summaries of b1 and b0  

b1.sum=26+10=36. 

 Reverse join of b2 and b1 into b2: add summaries 

of b2 and b1  b2.sum=36+42=78. 

 b0 assigned the 2nd subrange and executes in 

final_scan mode. y[3] (b0.sum=10) is accurate. 

Result: y[4:7], sum=10+(5+6+7+8)=36. 

 b1 assigned the 3rd subrange and executes in 

final_scan mode. y[7] (b1.sum=36) is accurate. 

Result: y[8:11], sum=36+(9+10+11+12)=78. 

 b2 assigned the 4th subrange and  executes in 

final_scan mode. y[11] (b2.sum=78) is accurate. 

Result: y[12:15], sum=78+ (13+14+15+16)=136. 

 The summary of b2 is assigned to the summary of 

b0  b0.sum = 136. b2 and b1 are destroyed. 
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Figure 9. parallel_scan sample execution. 
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✓ Subranges are processed from left to right. 

✓ parallel_scan is in charge of distributing the workload, when to create and execute a body, and when to whether use 

final_scan of pre-scan mode. 

✓ is_final_scan(): It enables differentiation between pre_scan mode and final_scan mode. 

 
✓ Body split and reverse join:     

SumScan( SumScan& b, split ) : z(b.z), y(b.y), sum(id) {} 

void reverse_join(SumScan& a) { sum = a.sum + sum; } 

 Split constructor: It specifies that body b is split into body b and a new body a (this name a is declared in the reverse 

join method). The new body has the same input data (z, y, id). The new body is assigned a different subrange. 

 Reverse join method: the results of bodies b and a are merged into body a (this is the reverse of join in 

parallel_reduce). It is only the results that are merged, not the bodies.  

 
✓ Assign summary of b to the current object: void assign( SumScan& b ) { sum = b.sum; } 

 The summary of the last subrange (being acted upon by a body b) is assigned to the current object (usually the first 

one that was created). 
 

✓ A lambda expression also exists. However, lambda expressions for parallel_scan only run starting from TBB Update 1 

(2018). You need to update TBB in order for this lambda expression to work, otherwise it would not recognize this 

parallel_scan with 4 arguments. 
void main () { 

  size_t z[16] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}; 

  size_t y[16], id = 0;  

  int n = sizeof(z)/sizeof(z[0]); 

    

  size_t sum = parallel_scan (blocked_range<size_t>(0,n), id, 

               // Compute summary of range r 

               [&z,&y] (const blocked_range<size_t> &r, size_t sum, bool is_final_scan) -> size_t { 

                     size_t temp = sum; 

                     for (size_t j = r.begin(); j < r.end(); j++) { 

                        temp = temp + z[j]; 

                        if (is_final_scan)  y[j] = temp; 

                     } 

                     return temp; 

               }, 

               // Combine body 

               [] (size_t left, size_t right) -> size_t { 

                      return left + right; 

                   } 

               ); 

 

   printf (“Result: %ld\n”, sum); for (int i=0; i < n; i++) printf (“y[%d] = %ld\n”,i,y[i]); 

} 
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PARALLEL_FOR_EACH 

▪ This template function applies a function object f to each element in a sequence [first, last), possibly in parallel: 
void parallel_for_each (InputIterator first, InputIterator last, const Func &f) 

 
▪ This template function implements a workpile pattern. For some loops, the end of the iteration space is not known in 

advance, or the loop body may add more iterations to do before the loop exits. This is a generalization of the map pattern, 
where we add more to the “pile” of work to be done.  

▪ A linked list is an example of an iteration space that is not known in advance. Moreover, accessing items in a linked list is 
inherently serial. 

 
TBB PARALLEL_FOR_EACH 

▪ Unlike the other TBB directives, parallel_for_each explicitly requires us to work with sequential containers in C++ (e.g.: 

vectors, lists). 
✓ Lists: stores elements at non-contiguous memory locations (internally use a doubly linked list). 
✓ Vectors: store elements at contiguous memory location (like an array) 
✓ Insertion and deletion of elements is more efficient in lists than in vectors. 
✓ A list does not allow for random access, whereas a vector allow for random access. 

 

▪ parallel_for_each accesses the elements of the sequential containers via iterators. An invocation of parallel_for_each never 

causes two threads to act on an input iterator concurrently 
✓ iterator: object that points to an element in a range of elements and defines operator that can iterate through elements 

in a range. 
 
▪ Example: applying square root to each element of an array: 

✓ The class Applysqrt specifies the details of the parallel_for_each (this is called the imperative form): 
class Applysqrt { 

public: 

   void operator() (double &v) const { 

       v = sqrt(v); 

   } 

}; 

 
✓ Using a ‘vector’: 

using namespace std; 

using namespace tbb; 

 

int main () { 

   int a[10] = {2,3,4,5,6,7,8,9,10,11}; 

   int i; 

   vector <double> myarray; // declaration of an array that can change in size 

 

   for (int i = 0; i < 10; i++) { 

      myarray.push_back(a[i]); // push_back: adds elements at the end of vector  

   } 

 

   // Imperative form of parallel_for_each: 

   parallel_for_each (myarray.begin(), myarray.end(), Applysqrt()); 

 

   // Lambda expression form: 

   parallel_for_each (myarran.begin(), myarray.end(), 

                     [=] (double &elem) { elem = sqrt(elem); } ); 

 

   for (i = 0; i < 10; i++) printf (“myarray[%d] = %6.4f\n”,i, myarray[i]);  

   return 0; 

} 

 myarray.begin(): returns iterator pointing to first element of myarray. 

 myarray.end(): returns iterator pointing to last element of myarray. 

 We can access the individual elements of myarray directly (i.e., they provide random access). 

 
✓ Example: (lists): 

using namespace std; 

using namespace tbb; 

 

int main () { 

   list <double> mylist = {3,4,5,6,7,8,9,10}; 

   mylist.push_front(2); 

   mylist.push_back(11); 

    

   // Printing the elements of the list: 



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-4772/5772: High-performance Embedded Programming Fall 2024 

 

 

16 Instructor: Daniel Llamocca 

   // create iterator ‘it’. Note that we access the list via it (we print it). 

   for (auto it mylist.begin(); it != mylist.end(); ++it) // cannot use it < mylist.end() 

      cout << *it << endl;  

   

   // Alternative printing method: 

   for (double x: mylist) // variable x is used to iterate over the list elements 

      cout << x << endl; 

 

   // Imperative form of parallel_for_each: 

   parallel_for_each (mylist.begin(), mylist.end(), Applysqrt()); 

 

   // Lambda expression form: 

   parallel_for_each (myarran.begin(), myarray.end(), 

                     [=] (double &elem) { elem = sqrt(elem); } ); 

 

   for (double x: mylist) 

      cout << x << endl; 

 

   return 0; 

} 

 The list can only be accessed sequentially. 
 

▪ Note that in both examples, we know the size of the vector/list. However, these sequential containers allow for the 

insertion/deletion of more elements in a dynamic fashion. This is where parallel_for_each is useful: while it is being executed, 

it is conceivable that the list is still adding elements. 
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PIPELINING 
▪ This is a common parallel pattern that mimics a traditional manufacturing assembly line. The following is a helpful explanation 

(source: https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/pipelining/index.html): 
“A useful method of demonstrating this is the laundry analogy. Let's say that there are four loads of dirty laundry that need 
to be washed, dried, and folded. We could put the first load in the washer for 30 minutes, dry it for 40 minutes, and then 
take 20 minutes to fold the clothes. Then pick up the second load and wash, dry, and fold, and repeat for the third and 
fourth loads. Supposing we started at 6 PM and worked as efficiently as possible, we would still be doing laundry until 
midnight. 
However, a smarter approach to the problem would be to put the second load of dirty laundry into the washer after the first 
was already clean and whirling happily in the dryer. Then, while the first load was being folded, the second load would dry, 
and a third load could be added to the pipeline of laundry. Using this method, the laundry would be finished by 9:30.” 

  
  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

▪ Pipelines are found in: 
✓ Instruction pipelines: The processor breaks the execution of an instruction into stages. Results of one stage are fed onto 

the next stage. This allows multiple instructions to be in different stages of processing at the same time. 
✓ Hardware pipelines: A digital circuit is divided into stages, results of one stage are fed into the inputs of the next stage. 
✓ Software pipelines: A software routine can be thought of as a sequence of computing processes with the output stream 

of one process being fed as the input stream of the next one. Two parallel execution choices: 
 processor (or thread) assigned to execute the task of a single stage. 
 processor (or thread) executes the entire pipeline. Data usually arrives sequentially. When the 1st data arrives, 

processor 1 starts computation. When the 2nd data arrives, processor 2 starts computation, and so on. When the 
number of processors is exhausted, we wait until processor 1 finishes its pipeline so it can start a new one. 

(a)

(b)

Figure 10. Pipeline explanation. (a) normal sequential operation. (b) pipeline approach.  

Source: https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/pipelining/index.html 

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/pipelining/index.html
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PIPELINE MODEL FOR SOFTWARE 

▪ Pipeline: linear sequence of stages. Data flows through the pipeline, from the first stage to the last stage. 

✓ Stages of the pipeline can often be generated by using functional decomposition of tasks in an application.  
✓ Data is partitioned into pieces (also called items or data units). 
✓ Each stage performs a transform on the data (this transformation is called a task). 
✓ A stage’s transformation of items maybe one-to-one or more complicated. 
✓ Stages in a pipeline can be balanced (uniform processing time) or non-balanced (non-uniform). 
✓ Type of pipeline stages: 

 Serial stage: It processes one item at a time, though different stages can run in parallel. 
 Parallel stage: It processes multiple items at once and can deliver output items out of order. 

 
▪ Pipelines can be classified depending on the type of stages they contain: 

✓ Serial Pipeline: Pipeline with only serial stages. The throughput of the pipeline is limited to the throughput of the slowest 
serial stage, because every item must pass through that stage at a time. 

✓ Parallel Pipeline: This pipeline includes parallel stages (it might include serial stages as well) to make it more scalable.  
 
SERIAL PIPELINE 
▪ Fig. 11 shows a pipeline with 4 stages. Data is fed to the pipeline in terms of data units (or items). For example, for data 

unit ‘a’, Stage 1 applies a transform like S1(a), while Stage 2 applies a transform like S2(S1(a)), and so on. We call this a 
serial pipeline, where each stage can only process one data unit at a time. 

 
 
 
 
 
 
 
 
Pipeline with Uniform Stages 

▪ Here, each stage has a uniform processing time of T cycles. Fig. 12 depicts an example with 5 data units and 4 stages. 

✓ Sequential pipeline execution: This naïve approach is depicted in Fig. 12(a). We feed the first data unit ‘a’ and wait until 
the final result from Stage 4 is computed. Then, we feed data unit ‘b’ and wait until we get the result from Stage 4. This 
repeats until feed the last data unit (‘e’) and get the corresponding final result from Stage 4. The total computation time 
is given by (5 × 4) × 𝑇 cycles. 

✓ Concurrent pipeline execution: This is depicted in Fig. 12(b). If we continuously feed a new data unit right after Stage 1 
has processed a previous data unit, we can expose parallelism (all stages will be busy after a little while). The total 
computation time is given by (4 + 5 − 1) × 𝑇 = 8𝑇 cycles. This large reduction in computation time is an advantageous 

feature of pipelining. 
 
  
 
 
 
 
 
 
 
 
 
 

▪ For a pipeline with 𝑞 stages (each with a processing time T) that is continuously fed 𝑛 data units, we have that:  

✓ Latency (total time for one item to go through the whole system): 𝑞 × 𝑇. This is also called initial latency (number of 

cycles it takes to process the first data unit). 
✓ Total Processing Time: (𝑞 + 𝑛 − 1) × 𝑇 cycles. 

✓ Throughput (rate at which items are processed, in terms of data units per cycle): 
𝑛

(𝑞+𝑛−1)×𝑇
=

1

(
𝑞−1

𝑛
+1)×𝑇

 

 In practice, 𝑛 can be very large and thus the throughput is given by: 
1

(
𝑞−1

𝑛
+1)×𝑇

|
𝑛→∞

=
1

𝑇
 data units per cycle. This can 

be interpreted as the rate at which new items are processed after the first one (i.e., after the initial latency). 
 
Pipeline with Non-Uniform Stages 
▪ When the processing times of the stages are non-uniform, the slowest stage limits the throughput. Unlike the case with 

uniform stages, here we cannot guarantee that all stages will be necessarily operating at the same time. 

Stage 1 Stage 2 Stage 3 Stage 4Data Units Result per Unit

Task 1 Task 2 Task 3 Task 4

a b c d e

a

b

c

d

e

a

b

c

d

e

(a) (b)

T

Figure 11 4-stage serial pipeline. Each task is performed by a separate stage. The example shows 5 data units that go through 

the pipeline along with the final result per data unit. 

Figure 12. (a) Sequential pipeline execution for 5 data units: it takes 20T cycles. (b) Concurrent parallel execution for 5 data 

unit: it takes 8T cycles. Note how all stages are busy after some initial delay. 
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✓ Fig. 13(a) depicts the case where Stage 3 takes 1.5𝑇 cycles, while the other stages take 𝑇 cycles each. The latency is 
4.5𝑇 cycles. The pipeline must wait until Stage 3 computes its result before feeding a new data to Stage 3. Thus, the 

processing time is given by (4.5 − 1) × 𝑇 + (𝑛 − 1) × 1.5𝑇 +  𝑇 =  4.5 × 𝑇 +  (𝑛 − 1) × 1.5𝑇. The throughput is given 

by: 
𝑛

(4,5+(𝑛−1)×1.5)×𝑇
=

1

(
4.5−1.5

𝑛
+1.5)×𝑇

. When 𝑛 → ∞, the throughput results in 
1

1.5𝑇
. 

✓ Fig. 13(b) depicts the case where Stage 2 takes 2𝑇 cycles, while the other stages take 𝑇 cycles each. The latency is 5𝑇 

cycles. The pipeline must wait until Stage 2 computes its result before feeding a new data to Stage 2. Thus, the total 
processing time is given by (5 − 2) × 𝑇 + (𝑛 − 1) × 2𝑇 +  2𝑇 =  5 × 𝑇 +  (𝑛 − 1) × 2𝑇. The throughput is given by: 

𝑛

(5+(𝑛−1)×2)×𝑇
=

1

(
5−2

𝑛
+2)×𝑇

. When 𝑛 → ∞, the throughput results in 
1

2𝑇
. 

 
 
 
 
 
 
 
 
 

 
 
 
 
▪ In general (for 𝑞 stages and 𝑛 data items), the total processing time is given by 𝐿 × 𝑇 + (𝑛 − 1) × 𝑓 × 𝑇 cycles, where 𝑓 × 𝑇 

is the processing time of the largest stage (𝑓 > 1) and 𝐿 × 𝑇 is the latency. Note that this formula holds even if the other 
stages are unbalanced. Also, a balanced pipeline (𝑇 cycles per stage) is a special case where 𝐿 = 𝑞 and 𝑓 = 1. 

✓ Throughput: 
𝑛

(𝐿+(𝑛−1)×𝑓)×𝑇
=

1

(
𝐿−𝑓

𝑛
+𝑓)×𝑇

 data units per cycle. When 𝑛 → ∞, the throughput results in 
1

𝑓𝑇
, and as such it is 

determined by the slowest stage. 
 

TABLE III. SERIAL PIPELINE: PROCESSING TIMES. 𝑛: NUMBER OF ITEMS. T: NUMBER OF CYCLES OF THE SMALLEST STAGE 

Serial Pipeline Processing Time (cycles) Throughput (data units per cycle) Comments 

Uniform (each stage 

takes T cycles) 
(𝑞 + 𝑛 − 1) × 𝑇 

𝑛

(𝑞 + 𝑛 − 1) × 𝑇
=

1

𝑇
, 𝑖𝑓 𝑛 → ∞ 𝑞: Number of pipeline stages 

Non-Uniform (at least 

one stage takes more 

than T cycles) 

𝐿 × 𝑇 + (𝑛 − 1) × 𝑓 × 𝑇 
𝑛

(𝐿 + (𝑛 − 1) × 𝑓) × 𝑇
=

1

𝑓𝑇
, 𝑖𝑓 𝑛 → ∞ 

𝐿: factor of the pipeline latency (𝐿 × 𝑇) 

𝑓: factor of the largest stage (𝑓 > 1) 

 
PARALLEL PIPELINE 
▪ This is a pipeline where at least one parallel stage is included. Fig. 14 depicts a 4-stage parallel pipeline, where Stage 2 is a 

parallel stage. 
▪ While a parallel stage can process multiple items at once, note that serial stages are usually present in a parallel pipeline. 

As such, multiple items usually arrive to the parallel stage at different times. Nevertheless, if the processing time of the 
parallel stage is larger than the serial stages, the processing of multiple items can be overlapped, thereby reducing the 
overall processing time. 

▪ The introduction of parallel stages introduces a complication to serial stages. In a serial pipeline, each stage receives items 
in the same order. In a parallel pipeline, when a parallel stage intervenes between two serial stages, the later serial stage 
can receive items in a different order than the earlier stage. 

▪ Some applications require consistency in the order of items flowing through the serial stages, and usually the requirement 
is that the final output order be consistent with the initial input order. 

 
 
 
 
 
 
Parallel pipeline with Uniform Serial Stages 
▪ Fig. 15 illustrates the difference between a serial stage and a parallel stage in a pipeline. Fig. 15(a) shows a serial pipeline 

with a serial Stage 2, while Fig. 15(b) shows a parallel pipeline with serial stages and a parallel Stage 2. Stage 2 (whether 
serial or parallel) processing time is 4𝑇 cycles, while the other stages take 𝑇 cycles. 

✓ Serial pipeline: We must wait until Stage 2 computes is result before feeding a new data to it. The total processing time 
is given by 7𝑇 + (𝑛 − 1) × 4𝑇 cycles, where 4𝑇 is the processing time of the largest stage and 7𝑇 is the latency. 

✓ Parallel pipeline: Note how we can overlap the execution of up to 4 items in Stage 2. The total processing time is greatly 
reduced to 7𝑇 + (𝑛 − 1) × 𝑇 cycles. 

Stage 1 Stage 2 Stage 3 Stage 4Data Units Result per Unit

Task 1 Task 2 Task 3 Task 4

a b c d e

(b)(a)

T 1.5T 2T T

Figure 13. Pipelining for non-uniform stages. (a) Largest stage takes 1.5T cycles. Here, all the stages are busy at one point. (b) 

Largest stage takes 2T cycles. Here, at most only 3 stages are busy at a time. 

Figure 14. 4-stage parallel pipeline. Stage 2 is a parallel stage that can process multiple items concurrently. 
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▪ In general, a parallel stage takes 𝑝 × 𝑇 cycles (𝑝 ≥ 1). The processing time of a parallel pipeline with uniform serial stages 

is given by 𝐿 × 𝑇 + (𝑛 − 1) × 𝑇 cycles, with an asymptotic throughput (𝑛 → ∞) of 
1

𝑇
. If the parallel stage were a serial stage 

instead (i.e., a non-uniform serial pipeline), the processing time would be: 𝐿 × 𝑇 + (𝑛 − 1) × 𝑝 × 𝑇 cycles, with an 

asymptotic throughput (𝑛 → ∞) of 
1

𝑝𝑇
. Thus, there is a speed-up of 𝑝, which is the result of overlapping execution of items. 

✓ These formulas are valid even when there are other parallel stages, where 𝑝 is the factor of the largest parallel stage. 

 

▪ Fig. 16 shows more examples with a parallel Stage 2: 
✓ Fig. 16(a): 5𝑇 cycles for Stage 2. We can overlap the processing of 5 items. Processing time: 8𝑇 + (𝑛 − 1) × 𝑇 cycles. 

✓ Fig. 16(b): 2𝑇 cycles for Stage 2. We can overlap the processing of 2 items. Processing time: 5𝑇 + (𝑛 − 1) × 𝑇 cycles. 

✓ Fig. 16(c): All stages are uniform. Parallel Stage 2 (𝑇 cycles) has no advantage. Processing time: 4𝑇 + (𝑛 − 1) × 𝑇 cycles. 

 
 
 
 
 
 
 
 
 
 
 
 

Parallel pipeline with Non-Uniform Serial Stages 
▪ If the other serial stages are unbalanced, the processing time is given by 𝐿 × 𝑇 +  (𝑛 − 1) × 𝑓 × 𝑇 cycles with an asymptotic 

throughput (𝑛 → ∞) of 
1

𝑓𝑇
., where 𝑓 is the factor (𝑓 > 1) of the largest serial stage. Fig. 17 shows two cases. 

 
 
 
 
 
 
 
 
 
 
 
 
▪ The processing time of the parallel stage(s) get(s) absorbed into 𝐿 × 𝑇 factor. What limits the pipeline is the largest serial 

stage. The processing times of the parallel stages do not limit the pipeline: 
✓ For 𝑝 > 𝑓: If the parallel stage were a serial stage, the processing time would be 𝐿 × 𝑇 +  (𝑛 − 1) × 𝑝 × 𝑇 cycles, with 

an asymptotic throughput (𝑛 → ∞) of 
1

𝑝𝑇
. Thus, there is a speed-up of 𝑝/𝑓 (the result of overlapping execution of items). 

✓ For 𝑝 ≤ 𝑓: If the parallel stage were a serial stage, the processing time would be  𝐿 × 𝑇 + (𝑛 − 1) × 𝑓 × 𝑇. Here, there 

is no speed-up (compared with a serial pipeline), i.e., the benefits of parallel stages are nonexistent. 
 

TABLE IV. PARALLEL PIPELINE: PROCESSING TIMES. 𝑛: NUMBER OF ITEMS. T: NUMBER OF CYCLES OF THE SMALLEST STAGE 

Parallel Pipeline Processing Time (cycles) Throughput (data units per cycle) Comments 

Uniform serial stages (T 

cycles each) 
𝐿 × 𝑇 + (𝑛 − 1) × 𝑇 

𝑛

(𝐿 + 𝑛 − 1) × 𝑇
=

1

𝑇
, 𝑖𝑓 𝑛 → ∞ 𝐿: factor of the pipeline latency 

Non-uniform serial stages 

(at least one takes more 

than T cycles) 

𝐿 × 𝑇 + (𝑛 − 1) × 𝑓 × 𝑇 

𝑛

(𝐿 + (𝑛 − 1) × 𝑓) × 𝑇
=

1

𝑓𝑇
, 𝑖𝑓 𝑛

→ ∞ 

𝑓: factor of the largest serial stage 

(𝑓 > 1) 

(b)(a)

4T T T4T

(c)(a)

5T

(b)

2T T

(a)

2T4T

(b)

1.5T4T2T

Figure 15. (a) Non-uniform serial pipeline. Stage 2: largest serial stage that takes 4T cycles. (b) Parallel pipeline with uniform 

serial stages. Stage 2: parallel stage with a processing time of 4T cycles. 

Figure 16. Parallel pipeline execution. Stage 2 is parallel. (a) Stage 2 takes 5T cycles. (b) Stage 2 takes 2T cycles. (c) Stage 2 

takes 1 cycle; here, the parallel nature of Stage 2 is not exploited. 

Figure 17. Execution of parallel pipeline with non-uniform serial stages (Stage 2 is parallel). (a) Processing time: 6𝑇 +  (𝑛 −

1) × 2𝑇 cycles. (b) Processing time: 8.5𝑇 + (𝑛 − 1) × 2𝑇 cycles. 
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PARALLEL_PIPELINE (TBB 3.0) 
▪ Since a parallel stage might cause an ordering issue with the serial stages, Intel TBB defines three kinds of stages: 

✓ parallel: processes incoming items (even when arriving out of order) in parallel. 

✓ serial_out_of_order: Processes items one at a time, in arbitrary order. 

✓ serial_in_order: Processes items one at a time, in the same order as the other serial_in_order stages in the 

pipeline. 
▪ The difference in the two kinds of serial stages has no impact on asymptotic speedup. The throughput of the pipeline is still 

limited by the throughput of the slowest stage. 
 
▪ A common representation of a serial pipeline is depicted in Fig. 18(a), while a parallel pipeline is depicted in Fig. 18(b). A 

serial stage includes a feedback loop that represents updating its state, while a parallel stage does not include a feedback 
loop. In these diagrams, the processing stages handle a sequence of data items (not just a single item). 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ Two basic strategies for implementing a pipeline: 

✓ Stage-bound workers: Serial stages have one worker, while parallel stages may have multiple workers. A worker 
processes items as they arrive: it takes a waiting item, performs work, then passes items to the next stage. It is a simple 
strategy (essentially the same as map), but no data locality for each item. 

✓ Item-bound workers: Each worker handles an item at a time and carries the item through the pipeline. On finishing the 
last stage, it loops back to the beginning for the next item. This is a more complex strategy, but it has much better data 
locality for items (each item has a better chance of remaining in cache throughout pipeline). However, workers can be 
stuck waiting at serial stages. 

 
▪ The difference can be viewed as whether items flow past stages or stages flow past items. The two approaches have different 

locality behavior. The bound-to-stage approach has good locality for internal state of a stage, but poor locality for the item. 
Hence, it is better if the internal state is large and item state is small. The bound-to-item approach is the other way around. 

 

▪ Hybrid approach: Based on the two basic strategies, the current implementation of TBB’s parallel_pipeline uses a modified 

bind-to-item approach. Workers begin as item-bound. 
✓ A worker picks up an available item and carries it through as many stages as possible. 

✓ When entering a stage, the worker checks whether it is ready to process the item. If so, the worker continues into the 
stage. Otherwise, it parks the item, leaving it for another worker to pick it up when the stage is ready to accept it, and 
starts over. 

✓ When leaving a serial stage (a worker finishes applying a serial stage to an item), the worker checks if there is a parked 
item. If so, it spawns a new worker that unparks that item and continues carrying it through the pipeline. 

✓ The approach retains good data locality without requiring workers to block at serial stages. 
 

TBB SYNTAX 

▪ Simplest common sequence of stages for a parallel pipeline (TBB: we use the keyboard parallel_pipeline) is serial-parallel-

serial, where serial stages are in order. 
▪ Naming conventions: Data units (items) are called tokens. Stages are called filters. 
▪ A stage is required to map one input item to one output item. The steps to build a pipeline in TBB are: 

✓ A filter (stage) is built with filter_t<X,Y>. Type X is the input type; type Y is the output type. 

 Exceptions: first stage (filter_T<void, …>) and the last stage (filter_t<…,void>). 

Figure 18. (a) Serial pipeline. Each stage can maintain its state so that later outputs can depend on earlier ones. (b) Parallel 

pipeline. The parallel stage is stateless; thus, multiple invocations of it can run in parallel. 
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✓ Glue stages together with operator &. The output type of a stage must match the input type of the next stage. 

 From a system perspective, the result acts like a big stage. The top-level glued result is a filter_t<void,void>. 

✓ Invoke parallel_pipeline on the filter_t<void,void>. The call must also provide an upper bound on the number of items 

in flight (usually called ntokens). 

 

▪ The parallel_pipeline function is a strongly typed lambda-friendly interface for building and running pipeline. To build and run 

a pipeline from functors 𝑔0, 𝑔1, 𝑔2, … , 𝑔𝑛, the syntax is: 

 
parallel_pipeline( ntoken,  // maximum number of live tokens 

                   make_filter<void,I1>(mode0,g0) & 

                   make_filter<I1,I2>(mode1,g1) & 

                   make_filter<I2,I3>(mode2,g2) & 

                   ...  

                   make_filter<In,void>(moden,gn) ); 

 
▪ In general, functor 𝑔𝑖 should define its operator() to map objects of type 𝐼𝑖 to objects of type 𝐼𝑖+1.  

✓ Functor 𝑔0: special case, because it notifies the pipeline when the end of the input stream is reached. parallel_pipeline 

passes a flow_control object fc to the input functor of a filter. 

 𝑔0 must be defined such that the expression g0(fc) either returns the next value in the input stream, or 

 If the input functor reaches the end of the input stream, it invokes fc.stop() and returns a dummy value. This 

indicates there are no more items, and the currently returned item should be ignored. 
 

▪ ntoken (maximum number of live tokens) parameter to parallel_pipeline: 

✓ Sets a cap on the number of items that can be in processing at once. 
✓ Keeps parked items from accumulating to where they eat up too much memory. 
✓ Space is now bound by ntoken times the space used by serial execution. 

 
Generic Layout 
▪ This 3-stage parallel pipeline (serial-parallel-serial) is a helpful example. The functors are: 𝑔0, 𝑔1, 𝑔2. 

parallel_pipeline (ntoken, // ‘filter_mode’ instead of ‘filter’ in latest tbb 

                   make_filter<void,T>(filter_mode::serial_in_order, 

                                       [&](flow_control& fc ) -> T { 

                                             T item = g0(); // g0 returns an item of type T 

                                             if( !item ) { fc.stop(); return NULL; } 

                                             return item; 

                                       } ) & 

                   make_filter<T,U>   (filter_mode::parallel, g1) & 

                   make_filter<U,void>(filter_mode::serial_in_order, g2) ); 

 
✓ Mode of each functor: filter_mode::serial_in_order for 𝑔0 and 𝑔2, filter_mode::parallel for 𝑔1.  

✓ T, U : generic types. The output of each stage matches the input type of the next stage. 

✓ Functors 𝑔1 and 𝑔2: They can be defined as i) Classes elsewhere. They may or may not have arguments, and ii) lambda 

expressions inside parallel_pipeline. 

✓ Functor 𝑔0 is defined with a lambda expression: 

 The flow_control object fc is specified as [&](flow_control& fc) -> T, where T is output type of functor 𝑔0. 

 Functor description: 𝑔0 returns successive items of type T when called. If there are no more items (if (!item)), it 

invokes fc.stop() and returns a dummy value (NULL). 

✓ Stage 1: functor 𝑔0 maps items from void to T. It uses other variables in the code to input items. 

✓ Stage 2: functor 𝑔1 maps input items of type T to output items of type U. Items can be processed in parallel. 

✓ Stage 3: functor 𝑔2 maps items from U to void and it uses other variables in the code to output items. 

 

Example (with lambda expressions) 
▪ 3-stage parallel pipeline (serial-parallel-serial) that returns the sum of squares of a sequence defined by [first,last). In 

the C++ code, the three functors are specified as lambda expressions. 
✓ Stage 1 (it feeds input data items into the pipeline): Each time it is invoked, it returns an item (from input array first) 

or indicates that there are no more items. Its functor (𝑔0) returns successive items (pointers of type float*) when called, 

eventually returning NULL when done. 
✓ Stage 2: Parallel stage that maps an item of type float* to an item of type float. Its functor (𝑔1) returns the square 

of the value pointed by a float* variable. The input to this stage is specified in 𝑔1 (float *p), and its type must match 

the output type of the previous stage. The stage is parallel since we expect this operation to take the longest per item. 
✓ Stage 3 (pipeline end point): It receives items (in order) of type float and accumulates them. Its functor (𝑔2) specifies 

the input to the stage (float x). Syntax-wise, the stage has output; however, the generated data is placed in a variable 

sum that is returned by the main SumSquare function. 

▪ The C++ code is available below. ntoken = 16. 



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-4772/5772: High-performance Embedded Programming Fall 2024 

 

 

23 Instructor: Daniel Llamocca 

float SumSquare( float* first, float* last ) { 

   float sum = 0; 

   parallel_pipeline (16, // ntoken = 16 

                      make_filter<void,float*>(filter_mode::serial_in_order,  

                                              [&](flow_control& fc)-> float* { //functor g0:  exprsn 
                                                     if( first < last ) { 

                                                         return first++; 

                                                     } else { 

                                                         fc.stop(); 

                                                         return NULL; } 

                                              } ) & 

                      make_filter<float*,float>(filter_mode::parallel, 

                                                [](float* p) { return (*p)*(*p); } ) & 

                      make_filter<float,void>  (filter_mode::serial_in_order, 

                                                [&](float x) { sum += x; })  ); 

   return sum; 

} 

 

int main( ) { 

   int i; 

   float fi[101], *fo, ff; 

    

   for (i = 0; i < 100; i++) fi[i] = i; 

   fo = &fi[100]; // fi[100] will not be considered 

    

   ff = SumSquare (fi, fo); 

   cout << ff << "\n"; // sum of the squares of 0 to 99: 328350 

   return 0; 

} 

✓ Note that we can read any input data in Stage 1, and we can modify input data and other variables in Stage 3. 
✓ In general, for more complex operations, the functors are defined in classes. 
 

▪ Fig. 19 depicts the pipeline and the operations at each stage. Note the execution of the pipeline with overlapping of 
operations for Stage 2 (assigned a latency of 3𝑇 for example). Data is processed in batches of ntoken=16 items at most. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

TABLE V. STAGES OF THE PIPELINE IN FIG. 19. STAGE INPUTS ARE FUNCTORS’ OPERATOR() PARAMETERS. STAGE PARAMETERS (IN BLUE) ARE 

FUNCTOR’S INPUT PARAMETERS FED TO ITS PARAMETERIZED CONSTRUCTOR (USUALLY DATA MEMBERS). 

Stage 
input output Functor: input 

parameters 
Comments 

syntax type syntax type 

Stage 1  void return first++/NULL *float g0:  first, last special: input to stage is a flow_control object 

Stage 2 float *p float* return (*p)*(*p) float g1:  none g1: no data members, but the stage has input 

Stage 3 float x float  void g2:  &sum Data member implied in this  expression 

 
▪ Fig. 19 illustrates the advantages of pipelining compared to sequential execution. This example is intended to demonstrate 

syntax mechanics, as it is not optimal to implement the calculation: parallel overhead would offset any execution time gains. 
 
Throughput of the Pipeline 
▪ This is the rate at which tokens flow through it and is limited by two constraints: 

✓ First, if a pipeline is run with N tokens, then obviously there cannot be more than N operations running in parallel. 
Selecting the right value of N may involve some experimentation. Too low a value limits parallelism; too high a value 
may demand too many resources (for example, more buffers). 

✓ Second, the throughput of a pipeline is limited by the throughput of the slowest sequential filter. This is true even for a 
pipeline with no parallel filters. No matter how fast the other filters are, the slowest sequential filter is the bottleneck. 
So, in general you should try to keep the sequential filters fast, and when possible, shift work to the parallel filters. 

▪ To really benefit from a pipeline, the parallel filters need to be doing some heavy lifting compared to the serial filters. 

Figure 19. Serial-parallel-serial pipeline. Table V includes more details. (a) Variables in blue are functor’s parameters fed to its 

parameterized constructor. Stage 1 feeds input items into the pipeline. Parallel Stage 2 performs the squaring of an item (items can be 

processed in parallel). Stage 3 accumulates the result one item at a time. (b) Sample execution with Stage 2 taking 3T cycles. 
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